Most researchers in the field of neural plasticity are familiar with the "Kennard Principle," which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate-both developmentally and functionally-with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human "term," but only transient deficits (undetectable in adulthood) when induced in a "preterm" window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800847 | PMC |
http://dx.doi.org/10.3389/fnsys.2013.00058 | DOI Listing |
J Speech Lang Hear Res
January 2025
Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China.
Purpose: Neurotypical individuals show a robust "global precedence effect (GPE)" when processing hierarchically structured visual information. However, the auditory domain remains understudied. The current research serves to fill the knowledge gap on auditory global-local processing across the broader autism phenotype under the tonal language background.
View Article and Find Full Text PDFCodas
January 2025
Instituto de Psicologia, Serviço Social, Saúde e Comunicação Humana, Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS), Brasil.
Purpose: To ascertain whether Rapid Maxillary Expansion (RME) elicits effects on the functioning of the middle ear and air-bone gaps in children and adolescents.
Methods: Single-arm clinical trial, with data collection at four time points: before initiating Rapid Maxillary Expansion (RME) (T0), upon completion of RME (T1), three months post-RME completion (T2), and six months post-RME procedure (T3). The audiological assessment, conducted at all four time points, comprised otoscopy, pure tone and speech audiometry, tympanometry, and acoustic reflex investigation.
J Speech Lang Hear Res
January 2025
Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, France.
Purpose: Prelingual deaf children with cochlear implants show lower digit span test scores compared to normal-hearing peers, suggesting a working memory impairment. To pinpoint more precisely the subprocesses responsible for this impairment, we designed a sequence reproduction task with varying length (two to six stimuli), modality (auditory or visual), and compressibility (sequences with more or less regular patterns). Results on 22 school-age children with cochlear implants and 21 normal-hearing children revealed a deficit of children with cochlear implants only in the auditory modality.
View Article and Find Full Text PDFElife
January 2025
Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.
View Article and Find Full Text PDFJASA Express Lett
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98103, USA.
Pitch perception affects children's ability to perceive speech, appreciate music, and learn in noisy environments, such as their classrooms. Here, we investigated pitch perception for pure tones as well as resolved and unresolved complex tones with a fundamental frequency of 400 Hz in 8- to 11-year-old children and adults. Pitch perception in children was better for resolved relative to unresolved complex tones, consistent with adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!