AI Article Synopsis

  • An effective cancer therapy should specifically target tumors while minimizing side effects.
  • Researchers engineered a weakened strain of Salmonella typhimurium to deliver a gene called Apoptin into human cancer cells, showing increased cell death through a specific cellular pathway.
  • Tests in mice demonstrated that this recombinant bacteria slowed tumor growth and improved survival rates, suggesting its promise as a cancer treatment.

Article Abstract

An effective cancer therapeutic should target tumours specifically with limited systemic toxicity. Here, we transformed an attenuated Salmonella typhimurium (S. typhimurium) with an Apoptin expressing plasmid into a human laryngeal carcinoma cell line. The expression of the inserted gene was measured using fluorescence and immunoblotting assays. The attenuated S. typhimurium-mediated Apoptin significantly decreased cytotoxicity and strongly increased cell apoptosis through the activation of caspase-3. The process was mediated by Bax, cytochrome c and caspase-9. A syngeneic nude murine tumour model was used to determine the anti-tumour effects of the recombinant bacteria in vivo. Systemic injection of the recombinant bacteria with and without re-dosing caused significant tumour growth delay and reduced tumour microvessel density, thereby extending host survival. Our findings indicated that the use of recombinant Salmonella typhimurium as an Apoptin expression vector has potential cancer therapeutic benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805922PMC
http://dx.doi.org/10.7150/ijms.6960DOI Listing

Publication Analysis

Top Keywords

salmonella typhimurium
12
human laryngeal
8
cancer therapeutic
8
typhimurium apoptin
8
recombinant bacteria
8
typhimurium mediated
4
mediated delivery
4
apoptin
4
delivery apoptin
4
apoptin human
4

Similar Publications

Microbe Profile: Typhimurium: the master of the art of adaptation.

Microbiology (Reading)

January 2025

Clinical Infection, Microbiology & Immunology Department, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK.

Typhimurium is a major serovar that is found globally. It is responsible for outbreaks of self-limiting gastroenteritis that are broadly linked to the industrialization of food production. .

View Article and Find Full Text PDF

Inactivation and sublethal injury of Salmonella Typhimurium on beef and in aqueous solution treated with lactic acid.

Food Res Int

January 2025

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

Salmonella Typhimurium, a common foodborne pathogen, is widespread in foods. Lactic acid (LA) has been employed to control bacteria in food, while it can induce the formation of sublethally injured bacteria. The sublethal injury of LA against S.

View Article and Find Full Text PDF

Loop-mediated isothermal amplification (LAMP) is a detection method widely used in pathogen detection and clinical diagnosis. Nevertheless, it is highly constrained by thermal stability, catalytic activity, and resistance to inhibitors of Bst DNA polymerase. In this study, a novel DNA polymerase was characterized from Clostridium thermocellum, exhibiting potential in LAMP detection.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.

View Article and Find Full Text PDF

Oral Vaccine Formulation for Immunocastration Using a Live-Attenuated ΔSPI2 Strain as an Antigenic Vector.

Vaccines (Basel)

December 2024

Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.

Immunization against Gonadotropin-Releasing Hormone (GnRH) has been successfully explored and developed for the parenteral inoculation of animals, aimed at controlling fertility, reducing male aggressiveness, and preventing boar taint. Although effective, these vaccines may cause adverse reactions at the injection site, including immunosuppression and inflammation, as well as the involvement of laborious and time-consuming procedures. Oral vaccines represent an advancement in antigen delivery technology in the vaccine industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!