Most avian influenza viruses do not replicate efficiently in human cells. This is partly due to the low activity of the RNA polymerase of avian influenza viruses in mammalian cells. Nevertheless, this impediment can be overcome through an E→K adaptive mutation at residue 627 of the PB2 subunit of the polymerase. Accordingly, viral ribonucleoprotein (RNP) reconstitution assays show that a viral polymerase containing PB2 627E has impaired activity in mammalian cells compared to a viral polymerase that contains PB2 627K, characteristic of mammalian-adapted influenza viruses. In contrast, purified viral polymerases containing either PB2 627E or PB2 627K show comparable levels of activity in transcription assays that require no RNP assembly. We sought to reconcile these conflicting observations by using an NP-independent cell-based transcription/replication assay to assess viral polymerase activity. We found that PB2 627E polymerase restriction in mammalian cells is independent of NP expression but is dependent on the length of the viral RNA template. In addition, restriction of PB2 627E polymerase was overcome by mutations specific to the viral RNA template promoter sequence. Consequently, we propose that PB2 627E affects recruitment of the viral RNA promoter by the viral polymerase in mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911742PMC
http://dx.doi.org/10.1128/JVI.02022-13DOI Listing

Publication Analysis

Top Keywords

pb2 627e
24
mammalian cells
16
viral polymerase
16
influenza viruses
12
viral rna
12
viral
10
polymerase
9
pb2
9
polymerase activity
8
activity pb2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!