Demographic events and natural selection both influence animal phenotypic and genetic variation; exploring the effects of demography and selection on population divergence is of great significance in evolutionary biology. To uncover the causes behind the patterns of genetic differentiation and adaptation among six populations of Leuciscus waleckii from Dali Basin (two populations, alkaline vs. freshwater) and Amur Basin (four populations, freshwater rivers vs. alkaline lake), a set of 21 unlinked polymorphic microsatellite markers and two mitochondrial DNA sequences (Cytb and D-loop) were applied to examine whether populations from different environments or habitats have distinct genetic differentiation and whether alkalinity is the major factor that caused population divergence. Bayesian analysis and principal component analysis as well as haplotype network analysis showed that these populations are primarily divided into two groups, which are congruent with geographic separation but not inconsistent with the habitat environment (alkalinity). Using three different approaches, outlier detection indicated that one locus, HLJYL017, may be under directional selection and involved in local adaptation processes. Overall, this study suggested that demographic events and selection of local environmental conditions including of alkalinity are jointly responsible for population divergence. These findings constitute an important step towards the understanding of the genetic basis of differentiation and adaptation, as well as towards the conservation of L. waleckii.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10709-013-9741-6 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFEnviron Res
January 2025
Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany.
Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure.
View Article and Find Full Text PDFArch Microbiol
January 2025
Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.
Seed endophytes are actively used by the mother plant as both reservoir and vector of beneficial microbes. During seed dormancy endophytes experience significant physiochemical changes and only competent endophytes could colonise successfully in seeds and some of them act as obligate endophyte that are transmitted vertically across generations. The adaptive nature of endophytes allows them to switch lifestyles depending on environment and host conditions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Dr PDKV, Akola, Maharashtra, India.
Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!