Murine Ly49 receptors, which are expressed mainly on NK and NKT cells, interact with MHC class I (MHC-I) molecules with varying specificity. Differing reports of Ly49/MHC binding affinities may be affected by multiple factors, including cis versus trans competition and species origin of the MHC-I L chain (β2-microglobulin). To determine the contribution of each of these factors, Ly49G, Ly49I, Ly49O, Ly49V, and Ly49Q receptors from the 129 mouse strain were expressed individually on human 293T cells or the mouse cell lines MHC-I-deficient C1498, H-2(b)-expressing MC57G, and H-2(k)-expressing L929. The capacity to bind to H-2D(b)- and H-2K(b)-soluble MHC-I tetramers containing either human or murine β2-microglobulin L chains was tested for all five Ly49 receptors in all four cell lines. We found that most of these five inhibitory Ly49 receptors show binding for one or both self-MHC-I molecules in soluble tetramer binding assays when three conditions are fulfilled: 1) lack of competing cis interactions, 2) tetramer L chain is of mouse origin, and 3) Ly49 is expressed in mouse and not human cell lines. Furthermore, Ly49Q, the single known MHC-I receptor on plasmacytoid dendritic cells, was shown to bind H-2D(b) in addition to H-2K(b) when the above conditions were met, suggesting that Ly49Q functions as a pan-MHC-Ia receptor on plasmacytoid dendritic cells. In this study, we have optimized the parameters for soluble tetramer binding analyses to enhance future Ly49 ligand identification and to better evaluate specific contributions by different Ly49/MHC-I pairs to NK cell education and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1300726 | DOI Listing |
bioRxiv
November 2024
Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of MHC class I and related molecules. Functionally, these receptor families are involved in licensing and rejection of MHC-I-deficient cells through missing-self.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA.
Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation.
View Article and Find Full Text PDFFront Immunol
May 2024
Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in , but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells.
View Article and Find Full Text PDFNat Commun
January 2024
Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
Cancer-associated immune dysfunction is a major challenge for effective therapies. The emergence of antibodies targeting tumor cell-surface antigens led to advancements in the treatment of hematopoietic malignancies, particularly blood cancers. Yet their impact is constrained against tumors of hematopoietic origin manifesting in the skin.
View Article and Find Full Text PDFImmunohorizons
November 2023
Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA.
NK cells are a key focus in immuno-oncology, based on their ability to eliminate malignant cells without prior sensitization. Dogs are valuable models for translational immunotherapy studies, especially for NK cells, where critical species differences exist between mice and humans. Given that the mechanism for recognition of "self" by canine NK cells is currently unknown, we sought to evaluate expression of Ly49 in canine NK cells using in silico and high-throughput techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!