The surface antigens of Paramecium constitute a family of high molecular weight (ca 300 kD) iso-proteins whose alternative expression, adjusted to environmental conditions, involves both intergenic and interallelic exclusion. Since the surface antigen molecules had previously been shown to play a key role in the control of their own expression, it seemed important to compare the structural particularities of different surface antigens: the G and D antigens of P. primaurelia expressed at different temperatures, and which are coded by two unlinked loci. Here we demonstrate that in all cases a given surface antigen presents two biochemically distinct basic forms: a soluble form recovered from ethanolic extraction of whole cells, and a membrane-bound form recovered from ciliary membranes solubilized by detergent. The membrane-bound form differs from the soluble one by its mobility on SDS gels and by an electrophoretic mobility shift in the presence of anionic or cationic detergents. Furthermore, two 40-45 kD polypeptides sharing common determinants with soluble antigens were found exclusively in ethanolic extracts but not in ciliary membranes: the cross-reactivity of these light polypeptides with ethanol-extracted antigens could be demonstrated only after beta-mercaptoethanol treatment. Immunological comparisons between allelic and non-allelic soluble antigens demonstrate that allelic antigens share a great number of surface epitopes, most of which are not accessible in vivo, while non-allelic antigens appear to share essentially sequence-antigenic determinants. The significance of these results is discussed in relation to the mechanism of antigenic variation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-4827(85)90104-1 | DOI Listing |
Immunohorizons
January 2025
Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Antibody (Ab) crosslinking of HLA class II (HLA II) molecules on the surface of endothelial cells (ECs) triggers proliferative and prosurvival intracellular signaling, which are implicated in promoting chronic Ab-mediated rejection (cAMR). Despite the importance of cAMR in transplant medicine, the mechanisms involved remain incompletely understood. Here, we examined the regulation of yes-associated protein (YAP) nuclear cytoplasmic localization and phosphorylation in human ECs challenged with Abs that bind HLA II, which are strongly associated with cAMR.
View Article and Find Full Text PDFMol Oral Microbiol
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Streptococcus mutans, the principal pathogen associated with dental caries, impacts individuals across all age groups and geographic regions. Beyond its role in compromising oral health, a growing body of research has established a link between S. mutans and various systemic diseases, including immunoglobulin A nephropathy (IgAN), nonalcoholic steatohepatitis (NASH), infective endocarditis (IE), ulcerative colitis (UC), cerebral hemorrhage, and tumors.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh.
Due to the growing concern about diabetes worldwide, we investigated the antidiabetic potential of Lactobacillus plantarum DMR14, assessing its effects on the diabetic mice and identifying safe, bioactive compounds targeting DPP4 protein for drug development through various methods, including in vivo assays, GC-MS analysis and molecular docking simulations. The animal experiments showed that after 3 weeks of treatment, the blood sugar levels of mice given the bacteria were reduced by 35.03% compared to baseline.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, Chengyang District People's Hospital, Qingdao, China.
Background: Vascular calcification is common and progressive in patients with chronic kidney disease. However, the risk factors associated with the progression of vascular calcification in patients receiving maintenance dialysis have not been fully elucidated. Here, we aimed to evaluate vascular calcification and identify the factors associated with its progression in patients receiving maintenance hemodialysis.
View Article and Find Full Text PDFHLA
January 2025
School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.
The novel HLA-C*06:44:02 allele differs from HLA-C*06:44:01 by one synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!