Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm.

ISME J

1] Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore [2] School of Biological Sciences, Nanyang Technological University, Singapore [3] Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.

Published: April 2014

Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspecies interactions affect biofilm development, structure and stress responses. Each species was fluorescently tagged to determine its abundance and spatial localization within the biofilm. The mixed-species biofilm exhibited distinct structures that were not observed in comparable single-species biofilms. In addition, development of the mixed-species biofilm was delayed 1-2 days compared with the single-species biofilms. Composition and spatial organization of the mixed-species biofilm also changed along the flow cell channel, where nutrient conditions and growth rate of each species could have a part in community assembly. Intriguingly, the mixed-species biofilm was more resistant to the antimicrobials sodium dodecyl sulfate and tobramycin than the single-species biofilms. Crucially, such community level resilience was found to be a protection offered by the resistant species to the whole community rather than selection for the resistant species. In contrast, community-level resilience was not observed for mixed-species planktonic cultures. These findings suggest that community-level interactions, such as sharing of public goods, are unique to the structured biofilm community, where the members are closely associated with each other.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960537PMC
http://dx.doi.org/10.1038/ismej.2013.194DOI Listing

Publication Analysis

Top Keywords

mixed-species biofilm
20
single-species biofilms
16
biofilm
12
biofilm development
8
interspecies interactions
8
development structure
8
species community
8
resistant species
8
mixed-species
7
community
5

Similar Publications

Cleaning-in-place (CIP) is the most commonly used cleaning and sanitation procedure for removing fouling deposits. Traditional CIP includes a series of chemical cleaning cycles, including alkaline, acid, and sanitizer. However, these chemicals are hazardous to the environment and employees.

View Article and Find Full Text PDF

Peri-implantitis associated with dental implants shares characteristics with destructive periodontal diseases. Both conditions are multifactorial and strongly correlated with the presence of microorganisms surrounding the prostheses or natural dentition. This study aimed to evaluate the antimicrobial activity and toxicity of a mucoadhesive hydrogel functionalized with aminochalcone (HAM-15) against Aggregatibacter actinomycetemcomitans, Fusobacterium periodonticum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Candida albicans.

View Article and Find Full Text PDF

Mixed-species Pseudomonas biofilms: a novel and sustainable strategy for malachite green dye decolorization and detoxification.

Folia Microbiol (Praha)

January 2025

Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India.

This study investigated the application of mixed biofilms formed by two Pseudomonas strains (NAA22 and NAA23) for bio-decolorization of malachite green (MG) dye. The isolated strains displayed biofilm formation and MG decolorization capabilities. Mixed biofilms exhibited significantly greater biofilm formation and MG decolorization (94.

View Article and Find Full Text PDF

Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma.

Sci Total Environ

January 2025

Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia.

Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited.

View Article and Find Full Text PDF

Efficient Photolysis of Multidrug-Resistant Polymicrobial Biofilms.

Adv Sci (Weinh)

December 2024

Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.

Article Synopsis
  • Chronic wounds often develop infections from tough, multidrug-resistant bacteria that form biofilms, making them hard to treat with current methods.
  • A new study investigates a non-antibiotic therapy using blue light and ferric ions to break down these biofilms and enhance the effectiveness of other treatments.
  • Results in diabetic mice showed that this approach significantly reduced bacterial presence and improved wound healing, offering a safe, easy-to-use option for chronic wound management, especially in areas with limited medical resources.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!