Angiotensin-converting enzymes play a dominant role in fertility.

Int J Mol Sci

Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, China.

Published: October 2013

AI Article Synopsis

  • Infertility linked to metabolic syndrome has a global prevalence of 10%-20%, as noted by the World Health Organization.
  • Evidence suggests that the renin-angiotensin system plays a significant role in fertility issues across populations.
  • Alterations in angiotensin-converting enzymes may contribute to infertility in both genders, but further research is necessary to determine the impact of the angiotensin-converting enzyme-3 pseudogene on human reproduction.

Article Abstract

According to the World Health Organization, infertility, associated with metabolic syndrome, has become a global issue with a 10%-20% incidence worldwide. An accumulating body of evidence has shown that the renin-angiotensin system is involved in the fertility problems observed in some populations. Moreover, alterations in the expression of angiotensin-converting enzyme-1, angiotensin-converting enzyme-2, and angiotensin-converting enzyme-3 might be one of the most important mechanisms underlying both female and male infertility. However, as a pseudogene in humans, further studies are needed to explore whether the abnormal angiotensin-converting enzyme-3 gene could result in the problems of human reproduction. In this review, the relationship between angiotensin-converting enzymes and fertile ability is summarized, and a new procedure for the treatment of infertility is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821659PMC
http://dx.doi.org/10.3390/ijms141021071DOI Listing

Publication Analysis

Top Keywords

angiotensin-converting enzymes
8
angiotensin-converting enzyme-3
8
angiotensin-converting
6
enzymes play
4
play dominant
4
dominant role
4
role fertility
4
fertility health
4
health organization
4
organization infertility
4

Similar Publications

Sesame (Sesamum indicum L.) is an important oilseed crop, and its seeds are a source of edible oil and widely used as a nutritious food that is beneficial to health in oriental countries. Phytochemical and biological investigations of the seeds have been well reported; however, those of the leaves have been limited.

View Article and Find Full Text PDF

The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetic nephropathy is closely linked to persistent high blood sugar levels, resulting in both kidney and heart vascular issues, particularly in type 1 diabetes, where genetics play a significant role in risk.
  • Extensive research, including genome-wide association studies (GWAS), has identified the angiotensin I-converting enzyme (ACE) gene as a major factor in susceptibility and prognosis for diabetic nephropathy.
  • Despite various studies identifying genetic variants like ACE I/D polymorphism and others, no major gene has been conclusively linked, and the effects observed remain relatively modest.
View Article and Find Full Text PDF

This narrative review explores the relationship between genetics and elite endurance athletes, summarizes the current literature, highlights some novel findings, and provides a physiological basis for understanding the mechanistic effects of genetics in sport. Key genetic markers include R577X (muscle fiber composition), I/D (cardiovascular efficiency), and polymorphisms in , , and , influencing energy metabolism, angiogenesis, and cardiovascular function. This review underscores the benefits of a multi-omics approach to better understand the complex interactions between genetic polymorphisms and physiological traits.

View Article and Find Full Text PDF

Investigation of the Interaction Between Angiotensin-Converting Enzyme (ACE) and ACE-Inhibitory Tripeptide from Casein.

Int J Mol Sci

December 2024

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.

Angiotensin-converting enzyme (ACE) inhibitory peptides exhibit antihypertensive effects by inhibiting ACE activity, and the study of the interaction between ACEs and inhibitory peptides is important for exploring new therapeutic strategies. In this study, the ACE-inhibitory peptide isolated from casein hydrolysate with the amino acid sequence Leu-Leu-Tyr (LLY) exhibited high ACE-inhibitory activity and stability, which holds significant implications for biochemistry and pharmaceutical applications. Furthermore, systematic investigations were conducted on the interaction between ACE and LLY through various approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!