Purpose: To use four-dimensional (4D)-flow MRI for the comprehensive in vivo analysis of hemodynamics and its relationship to size and morphology of different intracranial aneurysms (IA). We hypothesize that different IA groups, defined by size and morphology, exhibit different velocity fields, wall shear stress, and vorticity.
Materials And Methods: The 4D-flow MRI (spatial resolution = 0.99-1.8 × 0.78-1.46 × 1.2-1.4 mm(3) , temporal resolution = 44-48 ms) was performed in 19 IAs (18 patients, age = 55.4 ± 13.8 years) with saccular (n = 16) and fusiform (n = 3) morphology and different sizes ranging from small (n = 8; largest dimension = 6.2 ± 0.4 mm) to large and giant (n = 11; 25 ± 7 mm). Analysis included quantification of volumetric spatial-temporal velocity distribution, vorticity, and wall shear stress (WSS) along the aneurysm's 3D surface.
Results: The 4D-flow MRI revealed distinct hemodynamic patterns for large/giant saccular aneurysms (Group 1), small saccular aneurysms (Group 2), and large/giant fusiform aneurysms (Group 3). Saccular IA (Groups 1, 2) demonstrated significantly higher peak velocities (P < 0.002) and WSS (P < 0.001) compared with fusiform aneurysms. Although intra-aneurysmal 3D velocity distributions were similar for Group 1 and 2, vorticity and WSS was significantly (P < 0.001) different (increased in Group 1 by 54%) indicating a relationship between IA size and hemodynamics. Group 3 showed reduced velocities (P < 0.001) and WSS (P < 0.001).
Conclusion: The 4D-flow MRI demonstrated the influence of lesion size and morphology on aneurysm hemodynamics suggesting the potential of 4D-flow MRI to assist in the classification of individual aneurysms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865211 | PMC |
http://dx.doi.org/10.1002/jmri.24110 | DOI Listing |
Clin Imaging
January 2025
Institute of Clinical sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Dept of Pediatric Radiology, The Queen Silvia Children's Hospital, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background: Congenital heart diseases (CHDs) are common birth defects. This work presents over four years of clinical experience of 4D flow cardiovascular magnetic resonance (CMR), highlighting its value for pediatric CHD.
Methods: Children with various CHD diagnoses (n = 298) were examined on a 1.
Physiol Meas
January 2025
Electronics, Universidad Favaloro, Solis 453, Buenos Aires, Buenos Aires, 1078, ARGENTINA.
Aortic dilatation is a severe pathology that increases the risk of rupture and its hemodynamics could be accurately assessed by using the 4D flow cardiovascular magnetic resonance (CMR) technique but flow assessment under complex flow patterns require validation. The aim of this work was to develop an in vitro system compatible with CMR to assess the accuracy of volume flow measurements in dilated aortas. Approach.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
Purpose: This study aimed to assess the hemodynamic changes in the vena cava and predict the likelihood of Cardiac Remodeling (CR) and Myocardial Fibrosis (MF) in athletes utilizing four-dimensional (4D) parameters.
Materials And Methods: A total of 108 athletes and 29 healthy sedentary controls were prospectively recruited and underwent Cardiac Magnetic Resonance (CMR) scanning. The 4D flow parameters, including both general and advanced parameters of four planes for the Superior Vena Cava (SVC) and Inferior Vena Cava (IVC) (sheets 1-4), were measured and compared between the different groups.
JACC Asia
December 2024
Pediatric Cardiology and Adult CHD Unit, Fondazione G. Monasterio, CNR-Regione Toscana, Italy.
Cardiovasc Diagn Ther
December 2024
Cardiovascular Center, St. Luke's International Hospital, Tokyo, Japan.
Right ventricular (RV) dysfunction after biventricular repair is critical in most adults with congenital heart disease (ACHD). Conventional 2D magnetic resonance imaging (MRI) measurement is considered as a 'gold standard' for RV evaluation; however, addition information on ACHD after biventricular repair is sometimes required. The reasons why adjunctive information is required is as follows: (I) to evaluate the severity of cardiac burden in symptomatic patients with normal RV size and ejection fraction (EF), (II) to determine the optimal timing of invasive treatments in asymptomatic ones, and (III) to detect proactively a potential cardiac burden leading to ventricular deterioration, from a fluid dynamics perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!