Cardiac function and tolerance to ischemia-reperfusion injury in chronic kidney disease.

Nephrol Dial Transplant

Department of Kinesiology and Applied Physiology, University of Delaware, 25 N College Avenue, McDowell Hall, Newark, DE 19716, USA Department of Biological Sciences, University of Delaware, Newark, DE, USA.

Published: August 2014

Background: Cardiac dysfunction is an independent risk factor of ischemic heart disease and mortality in chronic kidney disease (CKD) patients, yet the relationship between impaired cardiac function and tolerance to ischemia-reperfusion (IR) injury in experimental CKD remains unclear.

Methods: Cardiac function was assessed in 5/6 ablation-infarction (AI) and sham male Sprague-Dawley rats at 20 weeks of age, 8 weeks post-surgery using an isolated working heart system. This included measures taken during manipulation of preload and afterload to produce left ventricular (LV) function curves as well as during reperfusion following a 15-min ischemic bout. In addition, LV tissue was used for biochemical tissue analysis.

Results: Cardiac function was impaired in AI animals during preload and afterload manipulations. Cardiac functional impairments persisted post-ischemia in the AI animals, and 36% of AI animals did not recover sufficiently to achieve aortic overflow following ischemia (versus 0% of sham animals). However, for those animals able to withstand the ischemic perturbation, no difference was observed in percent recovery of post-ischemic cardiac function between groups. Urinary NOx (nitrite + nitrate) excretion was lower in AI animals and accompanied by reduced LV endothelial nitric oxide synthase and NOx. LV antioxidants superoxide dismutase-1 and -2 were reduced in AI animals, whereas glutathione peroxidase-1/2 as well as NADPH-oxidase-4 and H(2)O(2) were increased in these animals.

Conclusions: Impaired cardiac function appears to predispose AI rats to poor outcomes following short-duration ischemic insult. These findings could be, in part, mediated by increased oxidative stress via nitric oxide-dependent and -independent mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106638PMC
http://dx.doi.org/10.1093/ndt/gft336DOI Listing

Publication Analysis

Top Keywords

cardiac function
24
cardiac
8
function tolerance
8
tolerance ischemia-reperfusion
8
ischemia-reperfusion injury
8
chronic kidney
8
kidney disease
8
impaired cardiac
8
preload afterload
8
animals
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!