In this paper we investigated a novel and non-invasive approach for an endogenous osteoblast stimulation mediated by boron nitride nanotubes (BNNTs). Specifically, following the cellular uptake of the piezoelectric nanotubes, cultures of primary human osteoblasts (hOBs) were irradiated with low frequency ultrasound (US), as a simple method to apply a mechanical input to the cells loaded with BNNTs. This in vitro study was aimed at investigating the main interactions between hOBs and BNNTs and to study the effects of the 'BNNTs + US' stimulatory method on the osteoblastic function and maturation.A non-cytotoxic BNNT concentration to be used in vitro with hOB cultures was established. Moreover, investigation with transmission electron microscopy/electron energy loss spectroscopy (TEM/EELS) confirmed that BNNTs were internalized in membranal vesicles. The panel of investigated osteoblastic markers disclosed that BNNTs were capable of fostering the expression of late-stage bone proteins in vitro, without using any mineralizing culture supplements. In our samples, the maximal osteopontin expression, with the highest osteocalcin and Ca(2+) production, in the presence of mineral matrix with nodular morphology, was observed in the samples treated with BNNTs + US. In this group was also shown a significantly enhanced synthesis of TGF-β1, a molecule sensitive to electric stimulation in bone. Finally, gene deregulations of the analyzed osteoblastic genes leading to depletive cellular effects were not detected. Due to their piezoelectricity, BNNT-based therapies might disclose advancements in the treatment of bone diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/24/46/465102 | DOI Listing |
Nano Lett
January 2025
School of Physics, Xidian University, No. 2 Taibai South Road, Xi'an 710071, China.
Fluorescent nanodots derived from hexagonal boron nitride (-BN) have garnered significant attention over the past decade. As a result, various synthesis methods─encompassing both bottom-up hydrothermal reactions and top-down exfoliation processes─have been deemed "successful" in producing BN nanodots. Nevertheless, this Perspective emphasizes that substantial challenges remain in the synthesis of "true" nanodots composed mainly of -BN units, as many so-called successful syntheses reported in the literature involve some mischaracterizations.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanics, University Politehnica of Timisoara, Piata Victoriei 2, 300006 Timisoara, Romania.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland.
This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure-High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 vol% cubic boron nitride (cBN), was sintered from the cBN-TiN-TiSiC system using the HPHT technique at a pressure of 7.7 GPa.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China.
Observing the intricate microstructure changes in abrasive flow machining with traditional experimental methods is difficult. Molecular dynamics simulations are used to look at the process of abrasive flow processing from a microscopic scale in this work. A molecular dynamics model for micro-cutting a single crystal γ-TiAl alloy with a rough surface in a fluid medium environment is constructed, which is more realistic.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physical Science and Technology, ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, P. R. China.
Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!