We describe a method for measuring small fluctuations in the intensity of a laser source with a resolution of 10⁻⁴. The current signal generated by a PIN diode is passed to a front-end electronics that discriminates the AC from the DC components, which are physically separated and propagated along circuit paths with different gains. The gain long the AC signal path is set one order of magnitude larger than that along the DC signal path in such a way to optimize the measurement dynamic range. We then derive the relative fluctuation signal by normalizing the input-referred AC signal component to its input-referred DC counterpart. In this way the fluctuation of the optical signal waveform relative to the mean power of the laser is obtained. A "Noise-Scattering-Pattern method" and a "Signal-Power-Spectrum method" are then used to analyze the intensity fluctuations from three different solid-state lasers. This is a powerful tool for the characterization of the intensity stability of lasers. Applications are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.024630DOI Listing

Publication Analysis

Top Keywords

signal path
8
signal
6
method characterizing
4
characterizing stability
4
stability light
4
light sources
4
sources describe
4
describe method
4
method measuring
4
measuring small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!