Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A.

Sci Signal

1Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.

Published: October 2013

Sulfonylureas are widely used drugs for treating insulin deficiency in patients with type 2 diabetes. Sulfonylureas bind to the regulatory subunit of the pancreatic β cell potassium channel that controls insulin secretion. Sulfonylureas also bind to and activate Epac2A, a member of the Epac family of cyclic adenosine monophosphate (cAMP)-binding proteins that promote insulin secretion through activation of the Ras-like guanosine triphosphatase Rap1. Using molecular docking simulation, we identified amino acid residues in one of two cyclic nucleotide-binding domains, cNBD-A, in Epac2A predicted to mediate the interaction with sulfonylureas. We confirmed the importance of the identified residues by site-directed mutagenesis and analysis of the response of the mutants to sulfonylureas using two assays: changes in fluorescence resonance energy transfer (FRET) of an Epac2A-FRET biosensor and direct sulfonylurea-binding experiments. These residues were also required for the sulfonylurea-dependent Rap1 activation by Epac2A. Binding of sulfonylureas to Epac2A depended on the concentration of cAMP and the structures of the drugs. Sulfonylureas and cAMP cooperatively activated Epac2A through binding to cNBD-A and cNBD-B, respectively. Our data suggest that sulfonylureas stabilize Epac2A in its open, active state and provide insight for the development of drugs that target Epac2A.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.2004581DOI Listing

Publication Analysis

Top Keywords

sulfonylureas camp
8
camp cooperatively
8
epac2a
8
activate epac2a
8
sulfonylureas
8
sulfonylureas bind
8
insulin secretion
8
epac2a binding
8
antidiabetic sulfonylureas
4
cooperatively activate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!