Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; VO2max: 57 ± 7 mL min(-1) kg(-1)) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 10(3) ions cm(-3)) or normal room conditions (PLA: 0.1 ± 0.06 × 10(3) ions cm(-3)) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II VO2 response (τ) and the magnitude of the VO2 slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (B(Lac)) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II VO2 τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or VO2 SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and B(Lac) as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00484-013-0754-8 | DOI Listing |
Nat Commun
January 2025
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.
View Article and Find Full Text PDFSci Rep
January 2025
Agricultural Engineering Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, Egypt.
The experiments were conducted at different levels of infrared power, airflow, and temperature. The relationships between the input process factors and response factors' physicochemical properties of dried garlic were optimized by a self-organizing map (SOM), and the model was developed using machine learning. Artificial Neural Network (ANN) with 99% predicting accuracy and Self-Organizing Maps (SOM) with 97% clustering accuracy were used to determine the quality characteristics of garlic.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Photocatalytic production of hydrogen peroxide (HO) presents a promising strategy for environmental remediation and energy production. However, achieving clean and efficient HO production under ambient conditions without organic sacrificial agents remains challenging. Enhancing the low crystallinity of covalent organic frameworks (COFs) can promote the separation and transmission of photo-generated carriers, thereby boosting their photocatalytic performance.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Siderite tailings is a potentially cost-free iron (Fe) source for arsenic (As) fixation in hazardous arsenic-calcium residues (ACR) as stable scorodite. In this study, a pure siderite reagent was employed to investigate the mechanism and optimal conditions for As fixation in ACR via scorodite formation, while the waste siderite tailings were used to further demonstrate the cotreatment method. The cotreatment method starts with an introduction of sulfuric acid to the ACR for As extraction and gypsum precipitation, and is followed by the addition of HO to oxidize As(III) in the extraction solutions and finalized by adding siderite with continuous air injection for scorodite formation.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
Data-independent acquisition (DIA) on ion mobility mass spectrometers enables deep proteome coverage and high data completeness in large-scale proteomics studies. For advanced acquisition schemes such as parallel accumulation serial fragmentation-based DIA (diaPASEF) stability of ion mobility (1/K) over time is crucial for consistent data quality. We found that minor changes in environmental air pressure systematically affect the vacuum pressure in the TIMS analyzer, causing ion mobility shifts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!