Previous studies have shown that athletic training or other physical activity causes structural and functional adaptations in the heart, but less is known how long-term physical activity affects heart when genetic liability and childhood environment are taken into account. The aim of this study was to investigate the effects of long-term physical activity vs. inactivity on cardiac structure and function in twin pairs discordant for physical activity for 32 years. Twelve same-sex twin pairs (five monozygotic and seven dizygotic, 50-67 years) were studied as a part of the TWINACTIVE study. Discordance in physical activity was initially determined in 1975 and it remained significant throughout the follow-up. At the end of the follow-up in 2007, resting echocardiographic and electrocardiographic measurements were performed. During the follow-up period, the active co-twins were on average 8.2 (SD 4.0) MET hours/day more active than their inactive co-twins (p < 0.001). At the end of the follow-up, resting heart rate was lower in the active than inactive co-twins [59 (SD 5) vs. 68 (SD 10) bpm, p=0.03]. The heart rate-corrected QT interval was similar between the co-twins. Also, there was a tendency for left ventricular mass per body weight to be greater and T wave amplitude in lead II to be higher in the active co-twins (18% and 15%, respectively, p=0.08 for both). Similar trends were found for both monozygotic and dizygotic twin pairs. In conclusion, the main adaptation to long- term physical activity is lowered resting heart rate, even after partially or fully controlling for genetic liability and childhood environment. Key pointsThe main adaptation to long-term physical activity is lowering of resting heart rate, even after controlling for genetic liability.VO2peak is increased in the active co-twins compared with their inactive co-twins and accordingly, also submaximal heart rates during the clinical exercise test are lower in physically active co-twins.There is a tendency for increased LVM per body weight and heightened T wave amplitude in the active co-twins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761543 | PMC |
Viruses
December 2024
Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.
Among the physical decontamination methods, treatment with ultraviolet (UV) radiation is a suitable means of preventing viral infections. Mercury vapor lamps (254 nm) used for room decontamination are potentially damaging to human skin (radiation) and harmful to the environment (mercury). Therefore, other UV-C wavelengths (100-280 nm) may be effective for virus inactivation on skin without damaging it, e.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA.
Flexible high-deflection strain gauges have been demonstrated to be cost-effective and accessible sensors for capturing human biomechanical deformations. However, the interpretation of these sensors is notably more complex compared to conventional strain gauges, particularly during dynamic motion. In addition to the non-linear viscoelastic behavior of the strain gauge material itself, the dynamic response of the sensors is even more difficult to capture due to spikes in the resistance during strain path changes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
Virtual reality (VR) has been used in research and clinical practice in the management of Parkinson's disease (PD), potentially enhancing physiotherapy. Adverse events (AEs) associated with VR applications in PD have been poorly explored. We conducted a randomized controlled trial to compare two 12-week interventions using physiotherapy and immersive VR, and analyzed the frequency and type of AEs occurring in 30 people with PD.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, 39110 Magdeburg, Germany.
Inappropriate, excessive, or overly strenuous training of sport horses can result in long-term injury, including the premature cessation of a horse's sporting career. As a countermeasure, this study demonstrates the easy implementation of a biomechanical load monitoring system consisting of five commercial, multi-purpose inertial sensor units non-invasively attached to the horse's distal limbs and trunk. From the data obtained, specific parameters for evaluating gait and limb loads are derived, providing the basis for objective exercise load management and successful injury prevention.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Medicine, Department of Kinesiology, Université Laval, Quebec City, QC G1V OA6, Canada.
Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!