AI Article Synopsis

  • Transposable elements in eukaryotic genomes can offer evolutionary benefits, but if not controlled, they can harm genetic integrity across generations.
  • Together with Piwi proteins, piRNAs play a crucial role in protecting the germ line from the harmful effects of these elements.
  • Recent findings in the nematode Caenorhabditis elegans reveal how the accurate production of piRNAs helps establish a defense mechanism against foreign genetic material, reinforcing the distinction between self and non-self DNA across generations.

Article Abstract

While most eukaryotic genomes contain transposable elements that can provide select evolutionary advantages to a given organism, failure to tightly control the mobility of such transposable elements can result in compromised genomic integrity of both parental and subsequent generations. Together with the Piwi subfamily of Argonaute proteins, small, non-coding Piwi-interacting RNAs (piRNAs) primarily function in the germ line to defend the genome against the potentially deleterious effects that can be caused by transposition. Here, we describe recent discoveries concerning the biogenesis and function of piRNAs in the nematode Caenorhabditis elegans, illuminating how the faithful production of these mature species can impart a robust defense mechanism for the germ line to counteract problems caused by foreign genetic elements across successive generations by contributing to the epigenetic memory of non-self vs. self.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928187PMC
http://dx.doi.org/10.4161/epi.26647DOI Listing

Publication Analysis

Top Keywords

biogenesis function
8
function pirnas
8
transposable elements
8
homeland security
4
security elegans
4
elegans germ
4
germ insights
4
insights biogenesis
4
pirnas eukaryotic
4
eukaryotic genomes
4

Similar Publications

The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.

View Article and Find Full Text PDF

The chloroplast RNA-binding protein CP29A supports expression during cold acclimation.

Proc Natl Acad Sci U S A

February 2025

Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.

The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.

View Article and Find Full Text PDF

Meiosis is generally a fair process: each chromosome has a 50% chance of being included into each gamete. However, meiosis can become aberrant with some chromosomes having a higher chance of making it into gametes than others. Yet, why and how such systems evolve remains unclear.

View Article and Find Full Text PDF

Trigeminal neuralgia is the most common cause of facial pain in individuals over 50 years old and can have a profoundly negative impact on quality of life. Epidemiological studies have measured the annual incidence of trigeminal neuralgia at around 4-5 cases per 100,000 inhabitants per year. In Iceland, this would amount to about 16-20 new cases annually.

View Article and Find Full Text PDF

Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!