AI Article Synopsis

  • The study investigates how reduced graphene oxide (rGO) affects the fluorescence of 1-aminopyrene (1-Ap) using advanced spectroscopic techniques.
  • Despite some unexpected trends in the data, the consistent absorption spectrum of 1-Ap and the decrease in its fluorescence lifetime suggest that the quenching is a dynamic process driven by electron transfer.
  • Computational findings indicate that electron transfer occurs between 1-Ap and rGO, with minimal π-π stacking interactions, confirming the experimental results regarding their electronic interactions.

Article Abstract

The quenching of the fluorescence of 1-aminopyrene (1-Ap) by reduced graphene oxide (rGO) has been investigated using spectroscopic techniques. In spite of the upward curvature in the Stern-Volmer plot, the unchanged spectral signature of the absorption of 1-Ap in the presence of rGO and the decrease in fluorescence lifetime with increasing rGO concentration point toward the dynamic nature of the quenching. Detailed analysis of steady state and time-resolved spectroscopic data has shown that the quenching arises due to the photoinduced electron transfer from 1-Ap to rGO. This is again supported by estimating the Gibb's free energy change for the ground as well as excited state electron transfer. Ab initio calculations under the density functional theory (DFT) formalism reveal that the possibility of π-π stacking is very slim in the 1-Ap-rGO system and the electron density resides completely on 1-Ap in the highest occupied molecular orbital (HOMO) and on graphene in the lowest unoccupied molecular orbital (LUMO), supporting the experimental findings of the intermolecular electron transfer between 1-Ap and rGO in the excited state.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp53416bDOI Listing

Publication Analysis

Top Keywords

electron transfer
16
excited state
12
state electron
8
transfer 1-ap
8
1-ap rgo
8
molecular orbital
8
electron
5
1-ap
5
rgo
5
transfer
4

Similar Publications

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe) across microns at room temperature via steady-state pump-probe measurement.

View Article and Find Full Text PDF

Concurrent Pressure-Induced Superconductivity and Photoconductivity Transitions in PbSeTe.

Adv Mater

December 2024

Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.

Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.

View Article and Find Full Text PDF

Quenching peroxynitrite (a reactive oxidant species) is a vital process in biological systems and environmental chemistry as it maintains redox balance and mitigates damaging effects in living cells and the environment. In this study, we report a systematic analysis of the mechanism of transforming peroxynitrite into nitrate using diaryl selenide in water. Through quantum mechanical calculations, we investigate the dynamic isomerization of peroxynitrite in a homogeneous catalytic environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!