A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strength Performance Assessment in a Simulated Men's Gymnastics Still Rings Cross. | LitMetric

AI Article Synopsis

  • This study investigated the effectiveness of small force platforms to measure the performance of gymnasts in the still rings cross position, which is vital for athletes in gymnastics.
  • Ten gymnasts were tested, divided into two groups: cross Performers (Senior National Team) and cross Non-Performers (Age Group).
  • The results indicated that the force platform measurements successfully differentiated between the two groups based on arm forces relative to body weight, suggesting a reliable and affordable way to evaluate this critical skill.

Article Abstract

Athletes in sports such as the gymnastics who perform the still rings cross position are disadvantaged due to a lack of objective and convenient measurement methods. The gymnastics "cross "is a held isometric strength position considered fundamental to all still rings athletes. The purpose of this investigation was to determine if two small force platforms (FPs) placed on supports to simulate a cross position could demonstrate the fidelity necessary to differentiate between athletes who could perform a cross from those who could not. Ten gymnasts (5 USA Gymnastics, Senior National Team, and 5 Age Group Level Gymnasts) agreed to participate. The five Senior National Team athletes were grouped as cross Performers; the Age Group Gymnasts could not successfully perform the cross position and were grouped as cross Non- Performers. The two small FPs were first tested for reliability and validity and were then used to obtain a force-time record of a simulated cross position. The simulated cross test consisted of standing between two small force platforms placed on top of large solid gymnastics spotting blocks. The gymnasts attempted to perform a cross position by placing their hands at the center of the FPs and pressing downward with sufficient force that they could remove the support of their feet from the floor. Force-time curves (100 Hz) were obtained and analyzed for the sum of peak and mean arm ground reaction forces. The summed arm forces, mean and peak, were compared to body weight to determine how close the gymnasts came to achieving forces equal to body weight and thus the ability to perform the cross. The mean and peak summed arm forces were able to statistically differentiate between athletes who could perform the cross from those who could not (p < 0.05). The force-time curves and small FPs showed sufficient fidelity to differentiate between Performer and Non- Performer groups. This experiment showed that small and inexpensive force platforms may serve as useful adjuncts to athlete performance measurement such as the gymnastics still rings cross. Key pointsStrength-related skills are difficult to assess in some sports and thus require special means.Small force platforms have sufficient fidelity to assess the differences between gymnasts who can perform a still rings cross from those who cannot.Strength assessment via small force platforms may serve as a means of assessing skill readiness, strength symmetry, and progress in learning a still rings cross.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778705PMC

Publication Analysis

Top Keywords

rings cross
20
cross position
20
force platforms
20
perform cross
20
cross
15
small force
12
gymnastics rings
8
perform rings
8
fidelity differentiate
8
differentiate athletes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!