A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated extraction of clinical traits of multiple sclerosis in electronic medical records. | LitMetric

Objectives: The clinical course of multiple sclerosis (MS) is highly variable, and research data collection is costly and time consuming. We evaluated natural language processing techniques applied to electronic medical records (EMR) to identify MS patients and the key clinical traits of their disease course.

Materials And Methods: We used four algorithms based on ICD-9 codes, text keywords, and medications to identify individuals with MS from a de-identified, research version of the EMR at Vanderbilt University. Using a training dataset of the records of 899 individuals, algorithms were constructed to identify and extract detailed information regarding the clinical course of MS from the text of the medical records, including clinical subtype, presence of oligoclonal bands, year of diagnosis, year and origin of first symptom, Expanded Disability Status Scale (EDSS) scores, timed 25-foot walk scores, and MS medications. Algorithms were evaluated on a test set validated by two independent reviewers.

Results: We identified 5789 individuals with MS. For all clinical traits extracted, precision was at least 87% and specificity was greater than 80%. Recall values for clinical subtype, EDSS scores, and timed 25-foot walk scores were greater than 80%.

Discussion And Conclusion: This collection of clinical data represents one of the largest databases of detailed, clinical traits available for research on MS. This work demonstrates that detailed clinical information is recorded in the EMR and can be extracted for research purposes with high reliability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861927PMC
http://dx.doi.org/10.1136/amiajnl-2013-001999DOI Listing

Publication Analysis

Top Keywords

clinical traits
16
medical records
12
detailed clinical
12
clinical
10
multiple sclerosis
8
electronic medical
8
clinical course
8
clinical subtype
8
edss scores
8
scores timed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!