Fe(3+) can catalyze H2O2 to oxidize along on the longitudinal axis of gold nanorods (AuNRs), which caused the aspect ratio of AuNRs to decrease, longitudinal plasmon absorption band (LPAB) of AuNRs to blueshift (Δλ) and the color of the solution to change obviously. Thus, a rapid response and highly sensitive non-aggregation colorimetric sensor for the determination of Fe(3+) has been developed based on the signal amplification effect of catalyzing H2O2 to oxidize AuNRs. This simple and selective sensor with a wide linear range of 0.20-30.00 μM has been utilized to detect Fe(3+) in blood samples, and the results consisted with those obtained by inductively coupled plasma-mass spectroscopy (ICP-MS). Simultaneously, the mechanism of colorimetric sensor for the detection of Fe(3+) was also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2013.05.024 | DOI Listing |
Int J Biol Macromol
December 2024
National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.
View Article and Find Full Text PDFTalanta
December 2024
Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
In this study, we demonstrate that a highly efficient colorimetric sensor prepared from carbon-shielded Co-Ce Prussian blue analog (PBA) nanopetals (CoO/CeO@C) by green chemical deposition method and thermal annealing processes for detection of ascorbic acid (AA) in cerebral microdialysis fluids. The synthesized CoO/CeO@C showed high dual-mimetic activity, i.e.
View Article and Find Full Text PDFACS Sens
December 2024
Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, 100015Beijing, PR China.
Biomarkers contained in human exhaled breath are closely related to certain diseases. As a noninvasive, portable, and efficient health diagnosis method, the breath sensor has received considerable attention in recent years for early disease screening and prevention due to its user-friendly and easy-accessible features. Although some key challenges have been addressed, its capability to precisely monitor specific biomarkers of interest and its physiological relevance to health metrics is still to be ascertained.
View Article and Find Full Text PDFMikrochim Acta
December 2024
State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
A HPU-23@Ru@Tb-NH sensor array with light-driven oxidase-mimicking activity and triple-emission fluorescence was developed. It was composed of a Tb-functionalized metal organic framework and Ru(bpy) and applied to the simultaneous detection of Hg, ClO, and PO via differently responsive channels. HPU-23@Ru@Tb-NH had a photoresponsive colorimetric response toward Hg with a LOD as low as 4.
View Article and Find Full Text PDFSci Rep
December 2024
Research Centre for Biomedical Engineering (RCBE), School of Science and Technology, City, University of London, Northampton Square, London, EC1V 0HB, UK.
Traditional methods for management of mental illnesses in the post-pandemic setting can be inaccessible for many individuals due to a multitude of reasons, including financial stresses and anxieties surrounding face-to-face interventions. The use of a point-of-care tool for self-management of stress levels and mental health status is the natural trajectory towards creating solutions for one of the primary contributors to the global burden of disease. Notably, cortisol is the main stress hormone and a key logical indicator of hypothalamic-pituitary adrenal (HPA) axis activity that governs the activation of the human stress system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!