Water-soluble drug partitioning and adsorption in HEMA/MAA hydrogels.

Biomaterials

Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States.

Published: January 2014

Two-photon confocal microscopy and back extraction with UV/Vis-absorption spectrophotometry quantify equilibrium partition coefficients, k, for six prototypical drugs in five soft-contact-lens-material hydrogels over a range of water contents from 40 to 92%. Partition coefficients were obtained for acetazolamide, caffeine, hydrocortisone, Oregon Green 488, sodium fluorescein, and theophylline in 2-hydroxyethyl methacrylate/methacrylic acid (HEMA/MAA, pKa≈5.2) copolymer hydrogels as functions of composition, aqueous pH (2 and 7.4), and salinity. At pH 2, the hydrogels are nonionic, whereas at pH 7.4, hydrogels are anionic due to MAA ionization. Solute adsorption on and nonspecific electrostatic interaction with the polymer matrix are pronounced. To express deviation from ideal partitioning, we define an enhancement or exclusion factor, E ≡ k/φ1, where φ1 is hydrogel water volume fraction. All solutes exhibit E > 1 in 100 wt % HEMA hydrogels owing to strong specific adsorption to HEMA strands. For all solutes, E significantly decreases upon incorporation of anionic MAA into the hydrogel due to lack of adsorption onto charged MAA moieties. For dianionic sodium fluorescein and Oregon Green 488, and partially ionized monoanionic acetazolamide at pH 7.4, however, the decrease in E is more severe than that for similar-sized nonionic solutes. Conversely, at pH 2, E generally increases with addition of the nonionic MAA copolymer due to strong preferential adsorption to the uncharged carboxylic-acid group of MAA. For all cases, we quantitatively predict enhancement factors for the six drugs using only independently obtained parameters. In dilute solution for solute i, Ei is conveniently expressed as a product of individual enhancement factors for size exclusion (Ei(ex)), electrostatic interaction (Ei(el)), and specific adsorption (Ei(ad)):Ei≡Ei(ex)Ei(el)Ei(ad). To obtain the individual enhancement factors, we employ an extended Ogston mesh-size distribution for Ei(ex); Donnan equilibrium for Ei(el); and Henry's law characterizing specific adsorption to the polymer chains for Ei(ad). Predicted enhancement factors are in excellent agreement with experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2013.09.109DOI Listing

Publication Analysis

Top Keywords

enhancement factors
16
specific adsorption
12
partition coefficients
8
oregon green
8
green 488
8
sodium fluorescein
8
anionic maa
8
electrostatic interaction
8
individual enhancement
8
adsorption
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!