Ultrafast conformational dynamics of electron transfer in ExBox4+⊂perylene.

J Phys Chem A

Department of Chemistry and ‡Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States.

Published: November 2013

Multielectron acceptors are essential components for artificial photosynthetic systems that must deliver multiple electrons to catalysts for solar fuels applications. The recently developed boxlike cyclophane incorporating two extended viologen units joined end-to-end by two p-phenylene linkers-namely, ExBox(4+)-has a potential to be integrated into light-driven systems on account of its ability to complex with π-electron-rich guests such as perylene, which has been utilized to great extent in many light-harvesting applications. Photodriven electron transfer to ExBox(4+) has not previously been investigated, however, and so its properties, following photoreduction, are largely unknown. Here, we investigate the structure and energetics of the various accessible oxidation states of ExBox(4+) using a combination of spectroscopy and computation. In particular, we examine photoinitiated electron transfer from perylene bound within ExBox(4+) (ExBox(4+)⊂perylene) using visible and near-infrared femtosecond transient absorption (fsTA) spectroscopy. The structure and conformational relaxation dynamics of ExBox(3+)⊂perylene(+) are observed with femtosecond stimulated Raman spectroscopy (FSRS). From the fsTA and FSRS spectra, we observe that the central p-phenylene spacer in one of the extended viologen units on one side of the cyclophane becomes more coplanar with its neighboring pyridinium units over the first ∼5 ps after photoreduction. When the steady-state structure of chemically generated ExBox(2+) is investigated using Raman spectroscopy, it is found to have the central p-phenylene rings in both of its extended viologen units rotated to be more coplanar with their neighboring pyridinium units, further underscoring the importance of this subunit in the stabilization of the reduced states of ExBox(4+).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp409883aDOI Listing

Publication Analysis

Top Keywords

electron transfer
12
extended viologen
12
viologen units
12
states exbox4+
8
raman spectroscopy
8
central p-phenylene
8
coplanar neighboring
8
neighboring pyridinium
8
pyridinium units
8
units
5

Similar Publications

Synergistic Enhancement of Ferroptosis via Mitochondrial Accumulation and Photodynamic-Controlled Release of an Organogold(I) Cluster Prodrug.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.

View Article and Find Full Text PDF

Structural and luminescent properties of a Cr/Sm doped GdAlO orthorhombic perovskite for solid-state lighting applications.

RSC Adv

January 2025

Departamento de Física Aplicada, Facultade de Óptica e Optometríae Instituto de Materiais (iMATUS) Campus Vida, Universidade de Santiago de Compostela (USC) 15782 Galicia Spain.

The Cr and Sm doped GdAlO perovskite with formula GdSmAlCrO, was synthesized a solid-state reaction method, and its structure, morphology, and photoluminescence properties were thoroughly investigated. The compound crystallizes in the orthorhombic space group, with Cr transition-metal ions substituting Al in the octahedral symmetry site, and Sm lanthanide (rare-earth) ions occupying the tetrahedral site. The material's morphology and chemical composition homogeneity were evaluated through Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis.

View Article and Find Full Text PDF

Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.

View Article and Find Full Text PDF

The study investigated the impact of low-dose sodium nitrite on yak meat color and mitochondrial functional characteristics during the wet curing. The results showed that sodium nitrite significantly enhanced the redness ( value) of yak meat by increasing the activities of mitochondrial complexes I, II, III and IV, which are critical for electron transport and aerobic respiration. Additionally, sodium nitrite reduced mitochondrial swelling and membrane permeability, and slowed the production of lipid oxidation products, indicating protective effects against mitochondrial damage and preserving mitochondrial integrity.

View Article and Find Full Text PDF

Photoluminescent Properties of Tb-UiO-66 Metal-Organic Framework Analogues.

Inorg Chem

January 2025

Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.

Three new analogues of Tb-UiO-66 with various functional groups (-F, -Br, -NH) on the terephthalic acid linker of the metal-organic framework (MOF) are synthesized and characterized. The photoluminescent properties of these analogues, as well as Tb-UiO-66 and Tb-UiO-66-(OH), are studied and correlated to the calculated energies for the triplet (T) states of each linker. The results show that the addition of electron withdrawing groups, such as -F and -Br, lead to higher T energies, resulting in quantum yields in the range of 6-31%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!