We sought to develop a PET radioligand that would be useful for imaging human brain metabotropic subtype 1 receptors (mGluR1) in neuropsychiatric disorders and in drug development. 4-Fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide (FIMX, 11) was identified as having favorable properties for development as a PET radioligand. We developed a method for preparing [(18)F]11 in useful radiochemical yield and in high specific activity from [(18)F]fluoride ion and an N-Boc-protected (phenyl)aryliodonium salt precursor (15). In baseline experiments in rhesus monkey, [(18)F]11 gave high brain radioactivity uptake, reflecting the expected distribution of mGluR1 with notably high uptake in cerebellum, which became 47% lower by 120 min after radioligand injection. Pharmacological challenges demonstrated that a very high proportion of the radioactivity in monkey brain was bound specifically and reversibly to mGluR1. [(18)F]11 is concluded to be an effective PET radioligand for imaging mGluR1 in monkey brain and therefore merits further evaluation in human subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866693PMC
http://dx.doi.org/10.1021/jm4012017DOI Listing

Publication Analysis

Top Keywords

pet radioligand
12
brain metabotropic
8
radioligand imaging
8
monkey brain
8
radioligand
5
brain
5
mglur1
5
synthesis evaluation
4
monkey
4
evaluation monkey
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!