Preliminary study on diffuse axonal injury by Fourier transform infrared spectroscopy histopathology imaging.

J Forensic Sci

Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, 25 West Tucheng Road, Haidian District, Beijing, 100088, China.

Published: January 2014

The objective of this study was to evaluate the application of Fourier transform infrared (FTIR) spectroscopy for detecting diffuse axonal injury (DAI) in a mouse model. Brain tissues from DAI mouse model were prepared with H&E, silver, and β-amyloid precursor protein (β-APP) immunohistochemistry stains and were also studied with FTIR. The infrared spectrum images showed high absorption of amide II in the subcortical white matter of the experimental mouse brain, while there was no obvious expression of amide II in the control mouse brain. The areas with high absorption of amide II were in the same distribution as the DAI region confirmed by the silver and β-APP studies. The result suggests that high absorption of amide II correlates with axonal injury. The use of FTIR imaging allows the biochemical changes associated with DAI pathologies to be detected in the tissues, thus providing an important adjunct method to the current conventional pathological diagnostic techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1556-4029.12290DOI Listing

Publication Analysis

Top Keywords

axonal injury
12
high absorption
12
absorption amide
12
diffuse axonal
8
fourier transform
8
transform infrared
8
dai mouse
8
mouse model
8
mouse brain
8
preliminary study
4

Similar Publications

Objective: To identify factors influencing neurological prognosis following traumatic brain injury (TBI) and to analyze the role of brain tissue oxygen pressure (PbtO) monitoring in prognostication.

Methods: In this case-control study, medical records of 412 individuals diagnosed with TBI were thoroughly examined and analyzed. The patients were divided into two groups based on their prognosis at three months post-injury: Good Prognosis (n = 321) and Poor Prognosis (n = 91).

View Article and Find Full Text PDF

Introduction: Studies have shown that blood biomarkers can differentiate dementia disorders. However, the diagnosis of dementia still relies primarily on cerebrospinal fluid and imaging modalities. The new disease-modifying treatments call for more widely applicable biomarkers.

View Article and Find Full Text PDF

Traumatic optic neuropathy (TON) is a common cause of irreversible blindness following head injury. TON is characterized by axon damage in the optic nerve followed by retinal ganglion cell death in the days and weeks following injury. At present, no therapeutic or surgical approach has been found to offer any benefit beyond observation alone.

View Article and Find Full Text PDF

Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies. Biomaterial therapies show promise as medical materials for neural repair through immunomodulation, structural support, and delivery of therapeutic biomolecules. However, a lack of facile and pathology-mimetic models for therapeutic testing is a bottleneck in neural tissue engineering research.

View Article and Find Full Text PDF

Spinal cord injuries (SCIs) often lead to lifelong disability. Among the various types of injuries, incomplete and discomplete injuries, where some axons remain intact, offer potential for recovery. However, demyelination of these spared axons can worsen disability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!