Objective: Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome.

Methods: High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO) database was queried to determine the prognostic value of identified microglia biomarkers in human GBM.

Results: We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype.

Significance: These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795683PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077571PLOS

Publication Analysis

Top Keywords

resident microglia
12
f11r novel
8
novel monocyte
8
monocyte prognostic
8
infiltrating macrophages
8
high-grade glioma
8
macrophages resident
8
gbm patient
8
bone marrow-derived
8
brain-infiltrating macrophages
8

Similar Publications

The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life.

View Article and Find Full Text PDF

The microglial response to inhibition of Colony-stimulating-factor-1 receptor by PLX3397 differs by sex in adult mice.

Cell Rep

January 2025

Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14642, USA. Electronic address:

Microglia, the resident macrophages of the brain, are derived from the yolk sac and colonize the brain before the blood-brain barrier forms. Once established, they expand locally and require Colony-stimulating-factor-1 receptor (CSF1R) signaling for their development and maintenance. CSF1R inhibitors have been used extensively to deplete microglia in the healthy and diseased brain.

View Article and Find Full Text PDF

Early precursor-derived pituitary gland tissue-resident macrophages play a pivotal role in modulating hormonal balance.

Cell Rep

January 2025

Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland. Electronic address:

The pituitary gland is the central endocrine regulatory organ producing and releasing hormones that coordinate major body functions. The physical location of the pituitary gland at the base of the brain, though outside the protective blood-brain barrier, leads to an unexplored special immune environment. Using single-cell transcriptomics, fate mapping, and imaging, we characterize pituitary-resident macrophages (pitMØs), revealing their heterogeneity and spatial specialization.

View Article and Find Full Text PDF

Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period.

View Article and Find Full Text PDF

Microglial modulation of neuronal network function and plasticity.

J Neurophysiol

January 2025

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro. México.

Microglia are the resident immune cells of the central nervous system (CNS), which have been classically viewed as involved in CNS responses to damage and tissue repair. However, microglia are constantly sensing neuronal network activity and changes in the CNS milieu, establishing complex state-dependent microglia-neuron interactions that impact their functions. By doing so, microglia perform a wide range of physiological roles, including brain homeostasis maintenance, control of neural connectivity, network function modulation, as well as functional and morphological plasticity regulation in health and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!