TUSC2-defective gene expression is detected in the majority of lung cancers and is associated with worse overall survival. We analyzed the effects of TUSC2 re-expression on tumor cell sensitivity to the AKT inhibitor, MK2206, and explored their mutual signaling connections, in vitro and in vivo. TUSC2 transient expression in three LKB1-defective non-small cell lung cancer (NSCLC) cell lines combined with MK2206 treatment resulted in increased repression of cell viability and colony formation, and increased apoptotic activity. In contrast, TUSC2 did not affect the response to MK2206 treatment for two LKB1-wild type NSCLC cell lines. In vivo, TUSC2 systemic delivery, by nanoparticle gene transfer, combined with MK2206 treatment markedly inhibited growth of tumors in a human LKB1-defective H322 lung cancer xenograft mouse model. Biochemical analysis showed that TUSC2 transient expression in LKB1-defective NSCLC cells significantly stimulated AMP-activated protein kinase (AMPK) phosphorylation and enzymatic activity. More importantly, AMPK gene knockdown abrogated TUSC2-MK2206 cooperation, as evidenced by reduced sensitivity to the combined treatment. Together, TUSC2 re-expression and MK2206 treatment was more effective in inhibiting the phosphorylation and kinase activities of AKT and mTOR proteins than either single agent alone. In conclusion, these findings support the hypothesis that TUSC2 expression status is a biological variable that potentiates MK2206 sensitivity in LKB1-defective NSCLC cells, and identifies the AMPK/AKT/mTOR signaling axis as an important regulator of this activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798310 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077067 | PLOS |
Molecules
January 2025
Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland.
Although curcumin is a well-known natural polyphenol with many biological activities, its clinical application has been limited by low aqueous solubility and stability. Therefore, curcumin derivatives have been proposed to overcome these limitations and increase anticancer activity. This study tested curcumin derivatives with modified feruloyl moieties ( and ) and the β-diketo moiety () to better understand their anticancer mechanism against human bladder cancer cells.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
The proliferation of CAR-T cells was hindered and cannot play its killing function well in solid tumors. And yet the regulatory mechanism of CAR-T cell proliferation is not fully understood. Here, we showed that recombinant expression of CD19CAR in T cells significantly increased the basal activation level of CAR-T cells and LCK activation.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China.
Background: With poor treatment outcomes and prognosis, bladder cancer remains a focus for clinical research in the precision oncology era. However, the potential of disulfidptosis, a novel cell death mechanism, and its related long non-coding RNAs to support selective cancer cell killing in this disease is still unclear.
Methods: We identified key disulfidptosis-related lncRNAs in bladder cancer, constructed a prognostic risk model with potential therapeutic targets, and confirmed the findings through quantitative PCR analysis.
J Inflamm Res
December 2024
The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China.
Background: Sepsis is a life-threatening condition characterized by organ dysfunction due to an impaired immune response to infection. The lungs are highly susceptible to infection, often resulting in acute lung injury (ALI). The immune-related GTPase M (IRGM) and its murine homolog Irgm1 mediate autophagy and are implicated in inflammatory diseases, yet their roles in sepsis-induced ALI remain unclear.
View Article and Find Full Text PDFPLoS One
December 2024
National Cancer Institute (NCI), National Institutes of Health (NIH), Experimental Immunology Branch, Bethesda, MD, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!