Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0 °C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795744 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075049 | PLOS |
Alzheimers Dement
December 2024
Cleveland Clinic, Cleveland, OH, USA.
Background: Apolipoprotein E (ApoE) is the primary cholesterol and lipid transporting apolipoprotein in the central nervous system (CNS) and is the greatest genetic risk factor for Alzheimer's Disease (AD). There are three main isoforms differing by single amino acid changes: ε3 is "neutral", ε4 is "risk" (Cys112Arg), and ε2 is "resilience" (Arg158Cys). Rare forms (Christchurch, Jacksonville) have also been proposed as resilience alleles, while an ε4-like allele (with Arg61Thr) is present in non-human primates without AD risk.
View Article and Find Full Text PDFSci Rep
January 2025
Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Johor, Kampus Pasir Gudang, Masai Johor, 81750, Malaysia.
The depletion of oil reserves and their price and availability volatility raise researchers' concerns about renewable resources for epoxidized material. This study aims to produce in situ and ex-situ hydrolyzed dihydroxy stearic acid via the epoxidation of neem oil. Epoxidized neem oil was synthesized using in situ-generated performic acid.
View Article and Find Full Text PDFACS Omega
December 2024
Western Australia School of Mines, Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenues, Kensington, 6151 WA, Australia.
The continuous use of fossil fuels has a huge impact on climate change because they release CO, which is a major greenhouse gas that causes 70-75% of global warming. Shale reserves could be used to store CO to lower greenhouse gas emissions. This could happen mostly through adsorbed gas, which can make up about 85% of all shale gas.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemistry, South China Normal University, Guangzhou 510006, China. Electronic address:
Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical Engineering, Vellore institute of technology, Vellore, Tamil Nadu, India.
The increasing concern about global warming and the depletion of fossil fuel reserves has led to a growing interest in alternative energy sources, particularly fuel cells (FCs). These green energy sources convert chemical energy into electrical energy, offering advantages such as quick initiation, high power density, and efficient operation at low temperatures. However, the performance of FCs is influenced by changes in operating temperature, and optimal efficiency is achieved by operating them at their maximum power point (MPP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!