Nine new derivatives of oleanane triterpenoids isolated from Fatsia polycarpa Hayata were synthesized through chemical transformations. Acetylation was effected by reaction with acetic anhydride in pyridine to afford compounds 1-5, while compound 6 was obtained using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) in CH2Cl2. The others derivatives 7-9 were obtained in reactions of the corresponding triterpenoids with EDC·HCl, 4-N,N-dimethylaminopyridine hydrochloride and 4-N,N-dimethylaminopyridine in CH2Cl2. The structures of 1-9 were elucidated from extensive spectroscopic and HRESIMS data, while the structure of 9 was further confirmed by X-ray diffraction analysis. The cytotoxic, anti-hepatitis B virus (HBV), antibacterial, hypoglycaemic and Wnt signaling activities of these derivatives were evaluated in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269735PMC
http://dx.doi.org/10.3390/molecules181013003DOI Listing

Publication Analysis

Top Keywords

biological activity
4
activity oleanane
4
oleanane triterpene
4
derivatives
4
triterpene derivatives
4
derivatives chemical
4
chemical derivatization
4
derivatization derivatives
4
derivatives oleanane
4
oleanane triterpenoids
4

Similar Publications

A new pipeline SPICE identifies novel JUN-IKZF1 composite elements.

Elife

January 2025

Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States.

Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements.

View Article and Find Full Text PDF

Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma.

FEBS J

January 2025

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.

In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels.

View Article and Find Full Text PDF

Antimicrobial peptides are crucial components of the immune systems of both vertebrates and invertebrates. Here, defensins, the most studied class of antimicrobial molecules in arthropods were investigated in four coleopteran insect species: (DeGeer, 1774), (Linnaeus, 1767), (Linnaeus, 1758), and (Brullé, 1832). The peptides synthesized with over 95% purity and their antimicrobial activities were evaluated by MIC test method.

View Article and Find Full Text PDF

Stem cells exist within a niche, a microenvironment that regulates their activity, but the mechanisms by which niche cells influence stem cell behaviour are poorly understood. In this issue, Stephen DiNardo and colleagues reveal that the shape of the adult Drosophila testes niche, which is dependent on the cytoskeleton of the niche cells, is crucial to maintaining germinal stem cell function. To learn more about this work, we spoke to first author Gabriela Vida and corresponding author Stephen DiNardo, Professor of Cell and Developmental Biology at the University of Pennsylvania, USA.

View Article and Find Full Text PDF

'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape.

Stem Cell Rev Rep

January 2025

Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.

Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!