Low-molecular-mass penicillin binding protein 6b (DacD) is required for efficient GOB-18 metallo-β-lactamase biogenesis in Salmonella enterica and Escherichia coli.

Antimicrob Agents Chemother

Departamento de Microbiología and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.

Published: September 2014

Metallo-β-lactamases (MBLs) are Zn(2+)-containing secretory enzymes of clinical relevance, whose final folding and metal ion assembly steps in Gram-negative bacteria occur after secretion of the apo form to the periplasmic space. In the search of periplasmic factors assisting MBL biogenesis, we found that dacD null (ΔdacD) mutants of Salmonella enterica and Escherichia coli expressing the pre-GOB-18 MBL gene from plasmids showed significantly reduced resistance to cefotaxime and concomitant lower accumulation of GOB-18 in the periplasm. This reduced accumulation of GOB-18 resulted from increased accessibility to proteolytic attack in the periplasm, suggesting that the lack of DacD negatively affects the stability of secreted apo MBL forms. Moreover, ΔdacD mutants of S. enterica and E. coli showed an altered ability to develop biofilm growth. DacD is a widely distributed low-molecular-mass (LMM) penicillin binding protein (PBP6b) endowed with low dd-carboxypeptidase activity whose functions are still obscure. Our results indicate roles for DacD in assisting biogenesis of particular secretory macromolecules in Gram-negative bacteria and represent to our knowledge the first reported phenotypes for bacterial mutants lacking this LMM PBP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910800PMC
http://dx.doi.org/10.1128/AAC.01224-13DOI Listing

Publication Analysis

Top Keywords

penicillin binding
8
binding protein
8
salmonella enterica
8
enterica escherichia
8
escherichia coli
8
gram-negative bacteria
8
Δdacd mutants
8
accumulation gob-18
8
dacd
5
low-molecular-mass penicillin
4

Similar Publications

Hospital surfaces are often contaminated with multidrug-resistant pathogenic bacteria that cause healthcare-associated infections and lead to increased mortality and morbidity. There is a need for new alternative antibacterial agents to overcome antibiotic resistance. Azadirachta indica and Simmondsia chinensis have been found to possess antibacterial activity and medicinal value.

View Article and Find Full Text PDF

Chlorogenic acid (CGA), a polyhydroxy phenolic acid, has been extensively studied for its antimicrobial properties. () threatens food safety by forming biofilms. This study aimed to investigate the mechanism of CGA against and its biofilm.

View Article and Find Full Text PDF

β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.

View Article and Find Full Text PDF

Purpose: To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB.

Methods: A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS.

View Article and Find Full Text PDF

Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!