A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. | LitMetric

ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes.

Antimicrob Agents Chemother

Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 7278-IRD 198 IHU, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.

Published: September 2014

ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) is a new bioinformatic tool that was created to detect existing and putative new antibiotic resistance (AR) genes in bacterial genomes. ARG-ANNOT uses a local BLAST program in Bio-Edit software that allows the user to analyze sequences without a Web interface. All AR genetic determinants were collected from published works and online resources; nucleotide and protein sequences were retrieved from the NCBI GenBank database. After building a database that includes 1,689 antibiotic resistance genes, the software was tested in a blind manner using 100 random sequences selected from the database to verify that the sensitivity and specificity were at 100% even when partial sequences were queried. Notably, BLAST analysis results obtained using the rmtF gene sequence (a new aminoglycoside-modifying enzyme gene sequence that is not included in the database) as a query revealed that the tool was able to link this sequence to short sequences (17 to 40 bp) found in other genes of the rmt family with significant E values. Finally, the analysis of 178 Acinetobacter baumannii and 20 Staphylococcus aureus genomes allowed the detection of a significantly higher number of AR genes than the Resfinder gene analyzer and 11 point mutations in target genes known to be associated with AR. The average time for the analysis of a genome was 3.35 ± 0.13 min. We have created a concise database for BLAST using a Bio-Edit interface that can detect AR genetic determinants in bacterial genomes and can rapidly and easily discover putative new AR genetic determinants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910750PMC
http://dx.doi.org/10.1128/AAC.01310-13DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
16
resistance genes
12
bacterial genomes
12
genetic determinants
12
bioinformatic tool
8
genes bacterial
8
genomes arg-annot
8
gene sequence
8
genes
6
sequences
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!