Structural basis for substrate specificity in the Escherichia coli maltose transport system.

Proc Natl Acad Sci U S A

Howard Hughes Medical Institute and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.

Published: November 2013

ATP-binding cassette (ABC) transporters are molecular pumps that harness the chemical energy of ATP hydrolysis to translocate solutes across the membrane. The substrates transported by different ABC transporters are diverse, ranging from small ions to large proteins. Although crystal structures of several ABC transporters are available, a structural basis for substrate recognition is still lacking. For the Escherichia coli maltose transport system, the selectivity of sugar binding to maltose-binding protein (MBP), the periplasmic binding protein, does not fully account for the selectivity of sugar transport. To obtain a molecular understanding of this observation, we determined the crystal structures of the transporter complex MBP-MalFGK2 bound with large malto-oligosaccharide in two different conformational states. In the pretranslocation structure, we found that the transmembrane subunit MalG forms two hydrogen bonds with malto-oligosaccharide at the reducing end. In the outward-facing conformation, the transmembrane subunit MalF binds three glucosyl units from the nonreducing end of the sugar. These structural features explain why modified malto-oligosaccharides are not transported by MalFGK2 despite their high binding affinity to MBP. They also show that in the transport cycle, substrate is channeled from MBP into the transmembrane pathway with a polarity such that both MBP and MalFGK2 contribute to the overall substrate selectivity of the system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831462PMC
http://dx.doi.org/10.1073/pnas.1311407110DOI Listing

Publication Analysis

Top Keywords

abc transporters
12
structural basis
8
basis substrate
8
escherichia coli
8
coli maltose
8
maltose transport
8
transport system
8
crystal structures
8
selectivity sugar
8
transmembrane subunit
8

Similar Publications

Effects of Saprolegnia parasitica on pathological damage and metabolism of Epithelioma papulosum cyprini cell.

Dev Comp Immunol

December 2024

National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China. Electronic address:

Saprolegniasis is a common fungal disease in aquaculture. It will form white flocculent hyphae on the skin of fish, and the hyphae may grow inward and penetrate into muscle tissue, which will reduce the immunity of the body and eventually lead to death. However, there are still some gaps in the mechanism of the fish body surface against the invasion of Saprolegnia.

View Article and Find Full Text PDF

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.

View Article and Find Full Text PDF

Inhibiting CFTR through inh-172 in primary neutrophils reveals CFTR-specific functional defects.

Sci Rep

December 2024

Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.

The lungs of people with cystic fibrosis (PwCF) are characterized by recurrent bacterial infections and inflammation. Infections in cystic fibrosis (CF) are left unresolved despite excessive neutrophil infiltration. The role of CFTR in neutrophils is not fully understood.

View Article and Find Full Text PDF

Genome-wide identification, phylogeny, evolutionary expansion, and expression analyses of ABC gene family in Castanea mollissima under temperature stress.

Plant Physiol Biochem

December 2024

Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China; Hebei Key Laboratory of Horicultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, China.

The ATP-binding cassette (ABC) gene family comprises some of the most critical transporter proteins in plants, playing vital roles in maintaining cellular homeostasis and adapting to environmental changes. While ABC transporters have been extensively characterized in various plant species, their profile in C. mollissima remains less understood.

View Article and Find Full Text PDF

Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!