Dose-limiting toxicity after hypofractionated dose-escalated radiotherapy in non-small-cell lung cancer.

J Clin Oncol

Donald M. Cannon, Pranshu Mohindra, Søren M. Bentzen, Anne M. Traynor, Richard J. Chappell, University of Wisconsin School of Medicine and Public Health, Madison, WI; Minesh P. Mehta, University of Maryland, Baltimore, MD; Jarrod B. Adkison, Southeast Alabama Medical Center, Dothan, AL; Deepak Khuntia, Varian Medical Systems, Palo Alto, CA; Wolfgang A. Tomé, Albert Einstein College of Medicine, Bronx, NY; George M. Cannon, Intermountain Medical Center, Salt Lake City, UT; Ranjini Tolakanahalli, Juravinski Cancer Center, Hamilton, Canada.

Published: December 2013

Purpose: Local failure rates after radiation therapy (RT) for locally advanced non-small-cell lung cancer (NSCLC) remain high. Consequently, RT dose intensification strategies continue to be explored, including hypofractionation, which allows for RT acceleration that could potentially improve outcomes. The maximum-tolerated dose (MTD) with dose-escalated hypofractionation has not been adequately defined.

Patients And Methods: Seventy-nine patients with NSCLC were enrolled on a prospective single-institution phase I trial of dose-escalated hypofractionated RT without concurrent chemotherapy. Escalation of dose per fraction was performed according to patients' stratified risk for radiation pneumonitis with total RT doses ranging from 57 to 85.5 Gy in 25 daily fractions over 5 weeks using intensity-modulated radiotherapy. The MTD was defined as the maximum dose with ≤ 20% risk of severe toxicity.

Results: No grade 3 pneumonitis was observed and an MTD for acute toxicity was not identified during patient accrual. However, with a longer follow-up period, grade 4 to 5 toxicity occurred in six patients and was correlated with total dose (P = .004). An MTD was identified at 63.25 Gy in 25 fractions. Late grade 4 to 5 toxicities were attributable to damage to central and perihilar structures and correlated with dose to the proximal bronchial tree.

Conclusion: Although this dose-escalation model limited the rates of clinically significant pneumonitis, dose-limiting toxicity occurred and was dominated by late radiation toxicity involving central and perihilar structures. The identified dose-response for damage to the proximal bronchial tree warrants caution in future dose-intensification protocols, especially when using hypofractionation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837093PMC
http://dx.doi.org/10.1200/JCO.2013.51.5353DOI Listing

Publication Analysis

Top Keywords

dose-limiting toxicity
8
non-small-cell lung
8
lung cancer
8
toxicity occurred
8
central perihilar
8
perihilar structures
8
proximal bronchial
8
dose
6
toxicity hypofractionated
4
hypofractionated dose-escalated
4

Similar Publications

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

NIM-1324 is an oral investigational new drug for autoimmune disease that targets the Lanthionine Synthetase C-like 2 (LANCL2) pathway. Through activation of LANCL2, NIM-1324 modulates CD4+ T cells to bias signaling and cellular metabolism toward increased immunoregulatory function while providing similar support to phagocytes. In primary human immune cells, NIM-1324 reduces type I interferon and inflammatory cytokine (IL-6, IL-8) production.

View Article and Find Full Text PDF

: Paclitaxel (PTX), a commonly used chemotherapy for breast cancer (BC), is associated with dose-limiting toxicities (DLTs) such as peripheral neuropathy and neutropenia. These toxicities frequently lead to dose reductions, treatment delays, or therapy discontinuation, negatively affecting patients' quality of life and clinical outcomes. Current dosing strategies based on body surface area (BSA) fail to account for individual variations in body composition (skeletal muscle mass (SMM) and adipose tissue (AT) mass) and physical activity (PA), which can influence drug metabolism and toxicity.

View Article and Find Full Text PDF

Purpose: MAK683, a first-in-class and highly selective allosteric inhibitor of the embryonic ectoderm development subunit of polycomb repressive complex 2, has shown sustained antitumor activity in tumor xenograft models. This first-in-human phase 1/2 study evaluated the safety, pharmacokinetics (PK), and clinical activity of single-agent MAK683 in advanced malignancies.

Methods: MAK683 was administered fasted once daily or twice daily continuously in 28-day treatment cycles.

View Article and Find Full Text PDF

Purpose: Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is essential for the survival and immune sequestration of cancer cells. We conducted a phase 1 study of TTI‑101, a first-in-class, selective small-molecule inhibitor of STAT3, in patients with advanced metastatic cancer.

Patients And Methods: Patients were treated with TTI-101 orally twice daily in 28-day cycles at 4 dose levels (DLs): 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!