Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways.

Stem Cell Res

Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, Republic of Korea. Electronic address:

Published: January 2014

Although recent findings showed that the bioactive lipid metabolites can regulate the ES cell functions, the physiological relevance of interaction between sphingosine-1-phosphate (S1P) and Flk-1 and its related signaling molecules are not yet clear in ES cell proliferation. In the present study, S1P1-5 receptors were expressed in mouse ES cells and S1P increased S1P1-3 receptor expression level. S1P treatment stimulated the cellular proliferation in S1P1/3-dependent manner, located in lipid rafts. In response to S1P, β-arrestin was recruited to S1P1/3 receptor and c-Src was activated. S1P also increased the binding of S1P1/3 receptor with Flk-1. Similar to responses for VEGF, S1P increased Flk-1 phosphorylation, which was blocked by β-arrestin siRNA, and PP2, but not by VEGF-A164 antibody or VEGF siRNA. In addition, S1P induced VEGF expression and VEGFR2 kinase inhibitor (SU1498) blocked the S1P-induced cellular proliferation. However, VEGF-A164 antibody or VEGF siRNA partially blocked S1P-induced cellular proliferation, suggesting that both VEGF-dependent Flk-1 activation and VEGF-independent Flk-1 activation are involved in S1P-induced ES cell proliferation. S1P and VEGF-induced phosphorylation of ERK and JNK were blocked by pretreatment with SU1498. Moreover, inhibition of ERK and JNK blocked S1P-induced cellular proliferation. In conclusion, S1P-elicited transactivation of Flk-1 mediated by S1P1/3-dependent β-arrestin/c-Src pathways stimulated mouse ES cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2013.08.013DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
cellular proliferation
16
s1p increased
12
blocked s1p-induced
12
s1p-induced cellular
12
proliferation
8
β-arrestin/c-src pathways
8
s1p
8
s1p1/3 receptor
8
vegf-a164 antibody
8

Similar Publications

Mechanisms and new advances in the efficacy of plant active ingredients in tendon-bone healing.

J Orthop Surg Res

January 2025

The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.

The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.

View Article and Find Full Text PDF

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!