Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rheumatoid arthritis (RA) joints are in a hypoxic condition. Hypoxia-induced migration and invasion of fibroblast-like synoviocytes (FLSs) are considered to play a critical role in the pathogenesis of RA. Among the key genes upregulated by hypoxia-inducible factor-1α (HIF-1α), CXC chemokine receptor 4 (CXCR4) plays an important role in FLS migration and invasion. Our previous studies have shown that celastrol exerts anti-arthritic effects by inhibiting FLS migration and invasion under normoxic conditions. However, the effect and molecular mechanisms underlying the effect of celastrol on hypoxia-induced FLS migration and invasion are poorly understood. In the present study, we assessed the effect of celastrol on hypoxia-induced FLS migration and invasion. Results showed that celastrol suppressed hypoxia-induced FLS migration and invasion. In addition, we also found that celastrol inhibited hypoxia-induced CXCR4 expression at both the mRNA and the protein levels in RA-FLSs. Meanwhile, it is revealed that celastrol inhibited the transcriptional activity of CXCR4 under hypoxic conditions by suppressing the binding activity of HIF-1α in the CXCR4 promoter, and blocked hypoxia-induced accumulation of nuclear HIF-1α. Furthermore, treatment with HIF-1α inhibitor reduced the hypoxia-induced expression and transcriptional activity of CXCR4. In conclusion, our results indicate that celastrol inhibits hypoxia-induced migration and invasion via suppression of HIF-1α mediated CXCR4 expression in FLSs under hypoxic conditions. These results provide a strong rationale for further testing and validation of the use of celastrol as a new alternative for using in the treatment of RA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2013.10.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!