This study aimed to develop a time-frequency method for measuring directional interactions over time and frequency from scalp-recorded electroencephalographic (EEG) signals in a way that is less affected by volume conduction and amplitude scaling. We modified the time-varying generalized partial directed coherence (tv-gPDC) method, by orthogonalization of the strictly causal multivariate autoregressive model coefficients, to minimize the effect of mutual sources. The novel measure, generalized orthogonalized PDC (gOPDC), was tested first using two simulated models with feature dimensions relevant to EEG activities. We then used the method for assessing event-related directional information flow from flash-evoked responses in neonatal EEG. For testing statistical significance of the findings, we followed a thresholding procedure driven by baseline periods in the same EEG activity. The results suggest that the gOPDC method 1) is able to remove common components akin to volume conduction effect in the scalp EEG, 2) handles the potential challenge with different amplitude scaling within multichannel signals, and 3) can detect directed information flow within a subsecond time scale in nonstationary multichannel EEG datasets. This method holds promise for estimating directed interactions between scalp EEG channels that are commonly affected by the confounding impact of mutual cortical sources.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2013.2286394DOI Listing

Publication Analysis

Top Keywords

scalp eeg
12
eeg
8
eeg signals
8
partial directed
8
directed coherence
8
volume conduction
8
amplitude scaling
8
method
5
measuring time-varying
4
time-varying flow
4

Similar Publications

A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.

View Article and Find Full Text PDF

A cross-domain-based channel selection method for motor imagery.

Med Biol Eng Comput

January 2025

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing, University, Chongqing, 400044, People's Republic of China.

Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain.

View Article and Find Full Text PDF

RINCH (Rhythmic Ictal Non-Clonic Hand movements), a lateralizing sign in frontotemporal epilepsy, has been well described in the adult epilepsy population but not in the pediatric setting. We looked for evidence of RINCH as an ictal sign in pediatric epilepsy monitoring unit reports in a large academic pediatric hospital. We found nine patients with RINCH ictal phenomenon over a five-year period.

View Article and Find Full Text PDF

Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.

View Article and Find Full Text PDF

Inner speech refers to the silent production of language in one's mind. As a purely mental action without obvious physical manifestations, inner speech has been notoriously difficult to quantify. Inner speech is thought to be closely related to overt speech.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!