The 12L hexagonal perovskite Ba4BiIr3O12 has been synthesized for the first time and characterized using high-resolution neutron and synchrotron X-ray diffraction as well as physical properties measurements. The structure contains Ir3O12 linear face-sharing octahedral trimer units, bridged by corner-sharing BiO6 octahedra. The average electronic configurations of Ir and Bi are shown to be +4(d(5)) and +4(s(1)), respectively, the same as for the S = 1/2 dimer system Ba3BiIr2O9, which undergoes a spin-gap opening with a strong magnetoelastic effect at T* = 74 K. Anomalies in magnetic susceptibility, heat capacity, electrical resistivity, and unit cell parameters indeed reveal an analogous effect at T* ≈ 215 K in Ba4BiIr3O12. However, the transition is not accompanied by the opening of a gap in spin excitation spectrum, because antiferromagnetic coupling among S = 1/2 Ir(4+) (d(5)) cations leads to the formation of a S = 1/2 doublet within the trimers, vs S = 0 singlets within dimers. The change in magnetic state of the trimers at T* leads to a structural distortion, the energy of which is overcompensated for by the formation of S = 1/2 doublets. Extending this insight to the dimer system Ba3BiIr2O9 sheds new light on the more pronounced low-temperature anomalies observed for that compound.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic4014619DOI Listing

Publication Analysis

Top Keywords

12l hexagonal
8
hexagonal perovskite
8
perovskite ba4biir3o12
8
dimer system
8
system ba3biir2o9
8
formation 1/2
8
1/2
5
complex magnetism
4
magnetism novel
4
novel 1/2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!