T cells show high sensitivity for antigen, even though their T-cell antigen receptor (TCR) has a low affinity for its ligand, a major histocompatibility complex molecule presenting a short pathogen-derived peptide. Over the past few years, it has become clear that these paradoxical properties rely at least in part on the organization of cell surface-expressed TCRs in TCR nanoclusters. We describe a protocol, comprising immunogold labeling, cell surface replica generation, and electron microscopy (EM) analysis that allows nanoscale resolution of the distribution of TCRs and other cell surface molecules of cells grown in suspension. Unlike most of the light microscopy-based single-molecule resolution techniques, this technique permits visualization of these molecules on cell surfaces that do not adhere to an experimental support. Given the potential of adhesion-induced receptor redistributions, our technique is a relevant complement to the substrate adherence-dependent techniques. Furthermore, it does not rely on introduction of fluorescently labeled recombinant molecules and therefore allows direct analysis of nonmanipulated primary cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-408143-7.00021-9 | DOI Listing |
JCI Insight
December 2024
Immunity, Inflammation and Disease Laboratory and.
T cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function in response to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection.
View Article and Find Full Text PDFT cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection.
View Article and Find Full Text PDFNat Commun
January 2024
Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.
T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity.
View Article and Find Full Text PDFCells
September 2023
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel.
T cells expressing chimeric antigen receptors (CARs) are at the forefront of clinical treatment of cancers. Still, the nanoscale organization of CARs at the interface of CAR-Ts with target cells, which is essential for TCR-mediated T cell activation, remains poorly understood. Here, we studied the nanoscale organization of CARs targeting CD138 proteoglycans in such fixed and live interfaces, generated optimally for single-molecule localization microscopy.
View Article and Find Full Text PDFNat Commun
August 2023
Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
TIGIT is an inhibitory receptor expressed on lymphocytes and can inhibit T cells by preventing CD226 co-stimulation through interactions in cis or through competition of shared ligands. Whether TIGIT directly delivers cell-intrinsic inhibitory signals in T cells remains unclear. Here we show, by analysing lymphocytes from matched human tumour and peripheral blood samples, that TIGIT and CD226 co-expression is rare on tumour-infiltrating lymphocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!