Feature selection from DNA microarray data is a major challenge due to high dimensionality in expression data. The number of samples in the microarray data set is much smaller compared to the number of genes. Hence the data is improper to be used as the training set of a classifier. Therefore it is important to select features prior to training the classifier. It should be noted that only a small subset of genes from the data set exhibits a strong correlation with the class. This is because finding the relevant genes from the data set is often non-trivial. Thus there is a need to develop robust yet reliable methods for gene finding in expression data. We describe the use of several hybrid feature selection approaches for gene finding in expression data. These approaches include filtering (filter out the best genes from the data set) and wrapper (best subset of genes from the data set) phases. The methods use information gain (IG) and Pearson Product Moment Correlation (PPMC) as the filtering parameters and biogeography based optimization (BBO) as the wrapper approach. K nearest neighbour algorithm (KNN) and back propagation neural network are used for evaluating the fitness of gene subsets during feature selection. Our analysis shows that an impressive performance is provided by the IG-BBO-KNN combination in different data sets with high accuracy (>90%) and low error rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796884PMC
http://dx.doi.org/10.6026/97320630009824DOI Listing

Publication Analysis

Top Keywords

data set
20
genes data
20
feature selection
16
data
12
microarray data
12
expression data
12
dna microarray
8
subset genes
8
gene finding
8
finding expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!