Background: Head injury is a hypothesised risk factor for Parkinson's disease, but there is a knowledge gap concerning the potential effect of injury circumstances (eg, work-related injuries) on risk. The objective of this study is to address this gap while addressing issues of recall bias and potential for reverse causation by prediagnosis symptoms.
Methods: We conducted a population based case-control study of Parkinson's disease in British Columbia, Canada (403 cases, 405 controls). Interviews queried injury history; whether injuries occurred at work, in a motor vehicle accident or during sports. Participants were also asked to report their suspicions about the causes of Parkinson's disease to provide an indicator of potential recall bias. Associations were estimated with logistic regression, adjusted for age, sex and smoking history.
Results: Associations were strongest for injuries involving concussion (OR: 2.08, 95% CI 1.30 to 3.33) and unconsciousness (OR: 2.64, 95% CI 1.39 to 5.03). Effects remained for injuries that occurred long before diagnosis and after adjustment for suspicion of head injury as a cause of Parkinson's disease. Injuries that occurred at work were consistently associated with stronger ORs, although small numbers meant that estimates were not statistically significant.
Conclusions: This study adds to the body of literature suggesting a link between head injury and Parkinson's disease and indicates further scrutiny of workplace incurred head injuries is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/oemed-2013-101444 | DOI Listing |
Am J Nucl Med Mol Imaging
December 2024
Department of Radiology, University of Pennsylvania Philadelphia, PA 19104, USA.
This review assesses the primary neuroimaging techniques used to evaluate Parkinson's disease (PD) - a neurological condition characterized by gradual dopamine-producing nerve cell degeneration. The neuroimaging techniques explored include positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). These modalities offer varying degrees of insights into PD pathophysiology, diagnostic accuracy, specificity by way of exclusion of other Parkinsonian syndromes, and monitoring of disease progression.
View Article and Find Full Text PDFFront Genet
January 2025
First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China.
Introduction: The deficiency of estrogen correlates with a range of diseases, notably Postmenopausal osteoporosis (PMO) and Parkinson's disease (PD). There is a possibility that PMO and PD may share underlying molecular mechanisms that are pivotal in their development and progression. The objective of this study was to identify critical genes and potential mechanisms associated with PMO by examining co-expressed genes linked to PD.
View Article and Find Full Text PDFAnn Neurosci
October 2024
Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India.
Background: Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss, Lewy body build-up, and motor dysfunction. One of the primary pathogenic mechanisms of PD development is autophagy dysfunction and nitric oxide-mediated neurotoxicity.
Purpose: The current study focuses on autophagy and nitric oxide (NO) signaling roles in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD mice and their protection by their modulators.
Front Neurosci
January 2025
Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
Neurodegenerative diseases represent a group of disorders characterized by progressive degeneration of neurons in the central nervous system, leading to a range of cognitive, motor, and sensory impairments. In recent years, there has been growing interest in the association between neurodegenerative diseases and olfactory dysfunction (OD). Characterized by a decline in the ability to detect or identify odors, OD has been observed in various conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS).
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
Mild cognitive impairment in Parkinson's disease (PD-MCI) as an independent risk factor for dementia in Parkinson's disease has prognostic value in predicting dementia in PD patients. It was found that the calculation of cognitive function decision-making could better evaluate the cognitive function of PD-MCI. Therefore, this study explored deficits in decision-making cognitive function in PD-MCI population, and mined novel digital biomarkers for recognizing early cognitive decline in PD-MCI through an independently designed maze decision-making digital assessment paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!