Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380000 | PMC |
http://dx.doi.org/10.1093/cercor/bht290 | DOI Listing |
Mol Psychiatry
September 2024
Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada.
Biotechnol J
September 2024
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.
Mesenchymal stem cell (MSC)-derived exosomes, as a cell-free alternative to MSCs, offer enhanced safety and significant potential in regenerative medicine. However, isolating these exosomes poses a challenge, complicating their broader application. Commonly used methods like ultracentrifugation (UC) and tangential flow filtration are often impractical due to the requirement for costly instruments and ultrafiltration membranes.
View Article and Find Full Text PDFAnal Chem
August 2024
State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
Small extracellular vesicles (sEVs) are proven to hold great promise for diverse therapeutic and diagnostic applications. However, batch preparation of sEVs with high purity and bioactivity is a prerequisite for their clinical translations. Herein, we present an electric field assisted tangential flow filtration system (E-TFF), which integrates size-based filtration with electrophoretic migration-based separation to synergistically achieve the isolation of high-quality sEVs from cell culture medium.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Pathology, University of Southern California, Keck School of Medicine.
Dynamic CpG methylation "barcodes" were read from 15,000 to 21,000 single cells from three human male brains. To overcome sparse sequencing coverage, the barcode had ~31,000 rapidly fluctuating X-chromosome CpG sites (fCpGs), with at least 500 covered sites per cell and at least 30 common sites between cell pairs (average of ~48). Barcodes appear to start methylated and record mitotic ages because excitatory neurons and glial cells that emerge later in development were less methylated.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany.
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!