This study explored the role of radiation-induced autophagy in low-dose hyperradiosensitivity (HRS) in the human lung cancer cell line A549. A549 cells, either treated with an autophagic inhibitor 3-methyladenine (3-MA), or with a vehicle control, were irradiated at different low doses (≤0.5 Gy). The generation of autophagy was examined by laser scanning confocal microscopy. Western blotting was used to detect the expression of microtubule-associated protein l light chain 3B II (LC3B-II). Flow cytometry (FCM) and clonogenic assays were used to measure the fraction of surviving cells at the low irradiation doses. Our results showed that there was a greater inhibition of autophagic activity, but a higher degree of low-dose HRS in A549 cells treated with 3-MA than in control group. Our data demonstrated that radiation-induced autophagy is correlated with HRS in A549 cells, and is probably one of the mechanisms underlying HRS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-013-1195-7DOI Listing

Publication Analysis

Top Keywords

radiation-induced autophagy
12
a549 cells
12
human lung
8
lung cancer
8
cancer cell
8
cell a549
8
cells treated
8
hrs a549
8
a549
5
suppression low-dose
4

Similar Publications

Icariside II relieves radiation enteritis by regulating PINK/Parkin-mediated mitophagy.

Int Immunopharmacol

December 2024

Changchun University of Chinese Medicine, Changchun, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China. Electronic address:

Radiation enteritis (RE) is one of the major side effects of radiotherapy. So far, there are no effective drugs for preventing the disease process. Icariside II (ICS II) is a highly efficient monomer compound extracted and purified from the classic Chinese medicinal herb Epimedium.

View Article and Find Full Text PDF

Elucidating the mechanism of action of astragalus polysaccharide on ionizing radiation-induced myocardial damage based on network pharmacology and experimental research.

Int Immunopharmacol

January 2025

Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Center for Heart, Lanzhou University of the First Hospital, Lanzhou, Gansu 730030, China. Electronic address:

Due to the unavoidable impact of ionizing radiation on the heart located near the mediastinum, varying degrees of myocardial damage may occur. As a result, the clinical application of radiotherapy in cancer treatment is significantly limited. However, the molecular mechanisms underlying radiation-induced heart disease (RIHD) are not yet fully understood, and there is a lack of disease-specific treatment strategies.

View Article and Find Full Text PDF

Radiotherapy is the mainstay of cancer treatment, and reducing radioresistance is still a poorly explored issue in radiotherapy. Our study was designed to explore the possible functions and mechanisms of autophagy in cervical cancer cells treated with radiotherapy. We discovered that autophagy was activated in C33a and HeLa cervical cancer cells in parallel with increased apoptosis and formation of polyploid giant carcinoma cells (PGCCs) after radiation.

View Article and Find Full Text PDF

Irradiation of the head and neck inevitably leads to decreased salivary gland function. It is postulated that radiation generates excessive reactive oxygen species (ROS) and reduces salivary gland function by ferroptosis, a new cell death mechanism; however, research in this area is currently lacking. In this study, we investigated the effects of amifostine and melatonin on acute salivary gland dysfunction and ferroptosis.

View Article and Find Full Text PDF

Objective: Radiation-induced lung injury (RILI) is a serious complication of radiotherapy, and the role of IL-17A in this process is not well understood. While IL-17A has been shown to modulate autophagy, conflicting reports exist regarding its activation or inhibition of autophagy. This study investigates the role of IL-17A in RILI and its effects on autophagy via the PP2A-mTOR pathway, with a focus on the PP2A B56α subunit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!