Systemic administration of kainic acid (KA) in rodents triggers limbic seizures following selective neuronal loss in the hippocampus attributed to the excitotoxic process. Lipid peroxidation products, such as 4-hydroxynonenal, are produced by oxidative stress and are present on the hippocampus, which contribute to neuronal death in the KA excitotoxicity model. Several antioxidants are neuroprotective agents. The aim of the present study was to analyse whether pirfenidone (PFD, 5-methyl-1-phenyl-2-(1H)-pyridone), an antioxidant drug, protects the neurons in the hippocampus of pubescent rats administered with KA. We evaluated the neuroprotective effect of PFD by quantifying the surviving neurons under hematoxilin-eosin staining after using three different doses of 100, 250, and 325 mg/kg administered via an orogastric tube 90 min after KA intraperitoneal injection (12 mg/kg). Only 325 mg/kg of PFD-attenuated neuronal loss in the hippocampal areas cornu ammonis field 1 (CA1) and cornu ammonis field 3 (CA3c) was observed; therefore, this dose was used in our subsequent studies. Later, we established that PFD reduces neuronal degeneration using Fluoro-Jade B stain in the CA3c but not in the CA1, and PFD reduces the presence of 4-hydroxynonenal, a lipid peroxidation product, in the CA3 by tissue immunohistochemistry. We concluded that only a single 325 mg/kg PFD dose had a neuroprotective effect after KA brain injury. This treatment may be advantageous because adequate pharmacological therapy with PFD can be developed to protect the neuron even after an acute neuronal disorder such as seizures or hypoxic/ischemic damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-013-0121-6DOI Listing

Publication Analysis

Top Keywords

neuronal loss
12
lipid peroxidation
12
325 mg/kg
12
cornu ammonis
8
ammonis field
8
pfd reduces
8
neuronal
6
pfd
6
single dose
4
dose pirfenidone
4

Similar Publications

Mechanisms of Neurosyphilis-Induced Dementia: Insights into Pathophysiology.

Neurol Int

December 2024

Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA.

Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies.

View Article and Find Full Text PDF

Dysfunctional copper homeostasis in affects genomic and neuronal stability.

Redox Biochem Chem

December 2024

Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany.

While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized.

View Article and Find Full Text PDF

Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice.

Front Mol Neurosci

December 2024

Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.

The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve.

View Article and Find Full Text PDF

Cathepsin B Modulates Alzheimer's Disease Pathology Through SAPK/JNK Signals Following Administration of Porphyromonas gingivalis-Derived Outer Membrane Vesicles.

J Clin Periodontol

December 2024

Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.

Aim: Porphyromonas gingivalis, a consensus periodontal pathogen, is thought to be involved in Alzheimer's disease (AD) progression, and P. gingivalis-derived outer membrane vesicles (PgOMVs) are a key toxic factor in inducing AD pathology. This study aimed to clarify the regulatory mechanism underlying the PgOMV-induced AD-like phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!