Prion diseases affect the central nervous system (CNS) in humans and animals, and are associated with the conversion of the cellular prion protein (PrPC) to the misfolded isoform (PrPSc). FTY720, an immune modulator and synthetic analogue of sphingosine-1-phosphate (S1P), activates S1P receptors and has been shown to be effective in experimental models of transplantation and autoimmunity, including multiple sclerosis. Whereas the immune modulatory functions of FTY720 have been extensively investigated, the other functions of FTY720 are not yet well understood. In this study, we investigated the effects of FTY720 phosphate (FTY720-p) on prion protein-mediated neuronal cell death, as well as its effects on intracellular apoptotic pathways. Treatment with FTY720-p protected neuronal cells from synthetic human prion protein peptide [PrP (106‑126)]-mediated damage and prevented mitochondrial dysfunction by inhibiting the activation of c-jun N-terminal kinase. Moreover, FTY720-p prevented the PrP (106‑126)-induced reduction in mitochondrial potential, the translocation of Bax to the mitochondria and the release of cytochrome c. To the best of our knowledge, this study is the first to demonstrate the effects of FTY720 on prion protein-mediated neurotoxicity and to suggest that FTY720 has therapeutic potential in prion diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijmm.2013.1528 | DOI Listing |
Brain
January 2025
Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, W1W 7FF, UK.
Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.
View Article and Find Full Text PDFBiomolecules
December 2024
Unit of Medical and Dental Sciences, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
Prion diseases, including Creutzfeldt-Jakob disease (CJD), are deadly neurodegenerative disorders characterized by the buildup of abnormal prion proteins in the brain. This accumulation disrupts neuronal functions, leading to the rapid onset of psychiatric symptoms, ataxia, and cognitive decline. The urgency of timely diagnosis for effective treatment necessitates the identification of strongly correlated biomarkers in bodily fluids, which makes our research crucial.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea.
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPs, encoded by the endogenous prion protein gene (). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the gene have not been investigated.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn.
View Article and Find Full Text PDFImmunohorizons
January 2025
Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.
The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!