Sarco/endoplasmic reticulum calcium ATP-ase (SERCA) is regulated by low concentrations of peroxynitrite and inhibited by high levels, as indicated in human diseases. We studied quercetin (Q) and its novel derivatives monochloropivaloylquercetin (MPQ) and chloronaphthoquinonequercetin (CHQ) as agents with expected preventive properties against peroxynitrite-induced SERCA impairment. Q and MPQ protected the SERCA1 against peroxynitrite induced activity decrease, while CHQ potentiated the inhibitory effect of peroxynitrite. Quercetin derivatives were found to be weaker antioxidants compared with Q, as indicated by their ability to scavenge peroxynitrite and prevent of SERCA1 carbonylation, both decreasing in the order (Q > MPQ > CHQ). Quantum-chemical values of theoretical parameter E HOMO also indicated lower antioxidant capacities for MPQ and CHQ. Prooxidant properties estimated by calculations of frontier molecular orbitals (E LUMO) correlated with experimentally determined SH-group decrease induced by the compounds studied. Both methods showed a decrease of prooxidant properties as follows: CHQ > MPQ > Q. In addition, experimentally measured half-wave potentials indicated stronger prooxidant properties of quercetin derivatives as compared to Q. More expressive alterations of conformation in the transmembrane region of SERCA1 induced by quercetin derivatives, as compared with Q, may at least partially correlate with their higher lipophilicities. The protective effects of Q and MPQ on different isoforms of SERCA activity may be useful in prevention and treatment of inflammation or muscle diseases. The inhibitory effect of CHQ on SERCA isoforms may be beneficial in therapeutic approaches aimed at anti-tumor treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-013-1839-8 | DOI Listing |
Food Chem
January 2025
School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri s.n.c. 62032, Camerino, Italy.
This study is focused on quantification of six quercetin derivatives in roasted Coffea arabica L. from different geographical origins and post-harvest processing methods for the first time. Popular beverages (espresso and moka) were also studied.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
This review evaluates the cytotoxic potential of the genus, with a focus on , , and . These species, known for their diverse phytochemical compositions, exhibit notable cytotoxic effects that suggest their utility in natural cancer treatments. Compounds such as quercetin, kaempferol, and sesbagrandiforian A and B have been highlighted for their strong antioxidant and antiproliferative effects, further emphasizing their therapeutic potential.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland.
Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant.
Methods: This experiment was conducted in 7 L pots under laboratory conditions.
Antioxidants (Basel)
January 2025
Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea.
The relationship between oxidative stress and cancer has been extensively studied and highlighted, along with its role in various aspects of angiogenesis. The modulation of oxidative levels and the adaptive mechanisms of oxidative stress in cancer systems are attractive research themes for developing anti-cancer strategies. Reactive oxygen species (ROS) are involved in various pathophysiological processes and play crucial roles in DNA damage and angiogenesis.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
This study explores the green extraction of phenolic antioxidants from fruit using choline-chloride-based deep eutectic solvents (DESs) as an eco-friendly alternative to conventional solvents. Sixteen DESs, prepared by combining choline chloride with various hydrogen bond donors, were characterized for their physical properties, including viscosity, polarity, and pH, and applied to extract phenolics from . High-performance liquid chromatography (HPLC) quantified key phenolic compounds, including neochlorogenic and chlorogenic acid, quercetin derivatives, and cyanidin derivatives, as well as total phenolic acids, flavanols, and anthocyanins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!