Chronic cholestatic liver diseases include fibrosing cholangiopathies such as primary biliary cirrhosis or primary sclerosing cholangitis. These and related cholangiopathies clearly display pathologies associated with (auto)immunologic processes. As the cholangiocyte's apical membrane is exposed to the toxic actions of the bile fluid, the interaction of bile with cholangiocytes and the biliary tree in general must be considered to completely understand the pathogenesis of cholangiopathies. While the molecular processes involved in the hepatocellular formation of bile are well understood in both normal and pathophysiologic conditions, those in the bile ducts of normal liver and in livers with cholangiopathies lag behind. This survey highlights key mechanisms known to date that are important for the formation of bile by hepatocytes and its modification by the biliary tree. It also delineates the clinical pathophysiologic findings for cholangiopathies and puts them in perspective with current experimental models to reveal the pathogenesis of cholangiopathies and develop novel therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mam.2013.10.001 | DOI Listing |
Int J Mol Sci
January 2025
College of Pharmacy and Food, Southwest Minzu University, Chengdu 610093, China.
Hepatic fibrosis (HF) is an important pathological state in the progression of chronic liver disease to end-stage liver disease and is usually triggered by alcohol, nonalcoholic fatty liver, chronic hepatitis viruses, autoimmune hepatitis (AIH), or cholestatic liver disease. Research on novel therapies has become a hot topic due to the reversibility of HF. Research into the molecular mechanisms of the pathology of HF and potential drug screening relies on reliable and rational biological models, mainly including animals and cells.
View Article and Find Full Text PDFPediatr Dev Pathol
January 2025
Département d'Anatomie et Cytologie pathologiques, Hôpital Menzel Bourguiba, Menzel Bourguiba, Tunisia.
The patients with Arthrogryposis-Renal dysfunction-Cholestasis (ARC) syndrome have genetic susceptibility to the opportunistic infections due to the involvement of VPS33B (vacuolar protein sorting 33 homolog B) in phagolysosome fusion in macrophages. Detailed pathologic studies in ARC patients are missing in literature due to the lack of autopsy. We described the first autopsy case of ARC syndrome in a 2-month-old male infant.
View Article and Find Full Text PDFBMC Immunol
January 2025
Department of Oncology and Hematology, Oulu University Hospital, Oulu, Finland.
Vanishing bile duct syndrome (VBDS) is a serious drug induced liver injury characterized by chronic cholestasis and loss of intrahepatic bile ducts. VBDS has been reported also following checkpoint inhibitor treatment. We compared CD3 + , CD4 + , CD8 + , CD20 + , CD57 + , PD-1 + and PD-L1 + lymphocyte infiltrates in liver biopsies of patients that encountered VBDS (n = 2) or hepatotoxicity (n = 3) after pembrolizumab (n = 4) or nivolumab (n = 1) treatment with samples from normal liver (n = 10), non-alcohol steatohepatitis (NASH, n = 10), primary biliary cholangitis (PBC, n = 10) or pembrolizumab-treated patients without adverse events (n = 2).
View Article and Find Full Text PDFJ Pediatr Gastroenterol Nutr
January 2025
Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, Colorado, USA.
Pediatric cholestatic liver diseases are rare conditions that can result from multiple specific underlying etiologies. Among the most common etiologies of pediatric cholestatic liver diseases are biliary atresia, Alagille syndrome (ALGS), and inherited disorders of bile acid transport. These diseases are characterized by episodic or chronic unremitting cholestasis.
View Article and Find Full Text PDFLiver Int
February 2025
Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!