Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, supplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly(ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3months. All drug-loaded PEU films exhibited in vitro ≥ 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858484 | PMC |
http://dx.doi.org/10.1016/j.jconrel.2013.10.005 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Chemistry, Duke University, Durham, NC, 27708, USA.
Safe, effective pain management remains one of the biggest challenges following surgical procedures. Despite widespread recognition of this problem and advances in the mechanistic understanding of pain signaling, post-surgical pain is often undermanaged, with opioid use remaining the clinical standard. As an alternative to current oral, systemic treatments, a degradable bupivacaine-loaded poly(ester urea) (PEU) thin film has been developed to deliver bupivacaine directly to the site of injury over an extended duration.
View Article and Find Full Text PDFJ Mater Chem B
June 2023
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
This work developed innovative poly(ester-urethane) materials double-modified by quercetin (QC) and phosphorylcholine (PC) with improved antibacterial activity and hemocompatibility. The functional monomer of PC-diol was first synthesized a click reaction between 2-methacryloyloxyethyl phosphorylcholine and α-thioglycerol; the NCO-terminated prepolymer was subsequently prepared by a one-pot condensation method of PC-diol, poly(ε-caprolactone) diol, and excess isophorone diisocyanate; finally, the prepolymer was chain-extended with QC to produce the linear products (PEU-PQs). H NMR, FT-IR, and XPS techniques confirmed the successful introduction of PC and QC, and the in-depth characterization of the cast PEU-PQ films was carried out.
View Article and Find Full Text PDFSoft Matter
October 2022
College of Material and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, China.
The exploration of biodegradable polymers with shape memory effects (SMEs) holds great promise in biomedical fields. Revealing the relationship between the SMEs and polymer structures not only contributes to interpreting the SME mechanisms, but also prompts the customization of materials properties for specific requirements. Herein, we developed a series of poly(ester urea) (PEU) random copolymers composed of two different diamine monomers based on L-alanine and L-valine, respectively.
View Article and Find Full Text PDFPolymers (Basel)
April 2022
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
The article below describes a simple methodology to prepare cost-effective biodegradable poly(ester urethane)s (PEUs) with ordered hard segments (OHS) for medical application as long-term implants. A low-cost diurethane diol (1,4-butanediol-hexanediisocyanate-1,4-butanediol, BHB) was first designed and synthesized. Consequently, the BHB was employed as a chain extender to react with NCO-terminated poly(-caprolactone) to obtain PEUs.
View Article and Find Full Text PDFHuan Jing Ke Xue
July 2021
College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
Microplastics have been found in many environmental media such as sea water, coastal tidal flats, terrestrial water, sediments, and organisms. Microplastics pollution in inland freshwater lakes have received extensive attention; however, the correlation between eutrophication and microplastics pollution in freshwater lakes remains unclear. In this study, 24 sampling sites were set up in the near shore surface waters of Dianchi Lake, and the pollution characteristics of microplastics such as abundance, composition, particle size, color, and form were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!