Exhaustive mutagenesis studies of the reactive centre loop (RCL), a key structural component of proteins belonging to the serpin superfamily of protease inhibitors, are complicated by the size of the RCL, serpin conformational complexity, and, for most serpins, the lack of a serpin-dependent phenotype of expressing cells. Here, we describe a thrombin capture assay that distinguished thrombin-inhibitory recombinant human alpha-1 proteinase inhibitor (API M358R) from non-inhibitory API variants in Escherichia coli lysates prepared from either single clones or pools. Binding of API proteins in the lysates to thrombin immobilized on microtiter plate wells was quantified via colour generated by a peroxidase-coupled anti-API antibody. Bacterial expression plasmids encoding inhibitory API M358R were mixed 1:99 with plasmids encoding non-inhibitory API T345R/M358R and the resulting library screened in pools of 10. All above-background signals arising from pools or subsequently re-probed single clones were linked to the presence of plasmids encoding API M358R. Screening of a portion of another expression library encoding hypervariable API with all possibilities at codons 352-358 also yielded only novel, thrombin-inhibitory variants. Probing a smaller library expressing all possible codons at Ala347 yielded the wild type, 6 different functional variants, one partially active variant, and two variants with no thrombin-inhibitory activity. API antigen levels varied considerably less among Ala347 variants than activity levels, and comparison of rate constants of inhibition of purified API variants to their corresponding thrombin capture assay lysate values was used to establish the sensitivity and specificity of the assay. The results indicate that the approach is sufficiently robust to correctly identify functional versus non-functional candidates in API expression libraries, and could be of value in systematically probing structure/function relationships not only in the API RCL, but also in that of other serpins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2013.10.011 | DOI Listing |
Biochem Biophys Res Commun
February 2016
Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada.
The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity.
View Article and Find Full Text PDFJ Biotechnol
August 2015
Department of Pathology and Molecular Medicine, McMasterUniversity, Hamilton, Ontario, Canada; Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada. Electronic address:
Serpins are a widely distributed family of serine protease inhibitors. A key determinant of their specificity is the reactive centre loop (RCL), a surface motif of ∼20 amino acids in length. Expression libraries of variant serpins could be rapidly probed with proteases to develop novel inhibitors if optimal systems were available.
View Article and Find Full Text PDFThromb Res
November 2014
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada. Electronic address:
The M358R variant of alpha-1-proteinase inhibitor (API) is a potent soluble inhibitor of thrombin. Previously we engineered AR-API M358R, a membrane-bound form of this protein and showed that it inhibited exogenous thrombin when expressed on transfected cells lacking tissue factor (TF). To determine the suitability of AR-API M358R for gene transfer to vascular cells to limit thrombogenicity, we tested the ability of AR-API M358R to inhibit endogenous thrombin generated in plasma via co-expression co-expressing it on the surface of cells expressing TF.
View Article and Find Full Text PDFPLoS One
October 2014
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada ; Canadian Blood Services, Research and Development, Hamilton, Ontario, Canada.
In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin.
View Article and Find Full Text PDFBMC Biochem
November 2013
Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada.
Background: Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). Fusing residues 1-75 of another serpin, heparin cofactor II (HCII), to API M358R (in HAPI M358R) was previously shown to accelerate thrombin inhibition over API M358R by conferring thrombin exosite 1 binding properties. We hypothesized that replacing HCII 1-75 region with the 13 C-terminal residues (triskaidecapeptide) of hirudin variant 3 (HV354-66) would further enhance the inhibitory potency of API M358R fusion proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!