Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi2O3/Bi2O2CO3/Sr6Bi2O9 photocatalyst.

J Hazard Mater

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.

Published: November 2013

Photocatalytic degradation of sulfamethoxazole (SMX) was investigated using Bi2O3/Bi2O2CO3/Sr6Bi2O9 (BSO) photocatalyst under visible light (>420 nm) irradiation. The photochemical degradation of SMX followed pseudo-first-order kinetics. The reaction kinetics was determined as a function of initial SMX concentrations (5-20 mg L(-1)), initial pH (3-11) and BSO concentrations (6-600 mg L(-1)). Approximately, 90% of SMX (10 mg L(-1)) degradation and 36% of TOC reduction were achieved at pH 7.0 after 120 min irradiation. The main mineralization products, including NH4(+), NO3(-), SO4(2-) and CO2, as well as intermediates 3-amino-5-methylisoxazole (AMI), p-benzoquinone (BZQ), and sulfanilic acid (SNA) were detected in aqueous solution. The formation of O2(*-) radical was evidenced by using electron spin resonance and a chemiluminescent probe, luminal. A possible degradation mechanism involving excitation of BSO, followed by charge injection into the BSO conduction band and formation of reactive superoxide radical (O2(*-)) was proposed for the mineralization of SMX. During the reaction, the O2(*-) radical attacks the sulfone moiety and causes the cleavage of the SN bond, which leads to the formation of two sub-structure analogs, AMI and SNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2013.09.048DOI Listing

Publication Analysis

Top Keywords

superoxide radical
8
o2*- radical
8
smx
5
evidence superoxide
4
radical
4
radical contribution
4
contribution demineralization
4
demineralization sulfamethoxazole
4
sulfamethoxazole visible-light-driven
4
visible-light-driven bi2o3/bi2o2co3/sr6bi2o9
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!