A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cost-effective mitigation of greenhouse gas emissions from different dairy systems in the Waikato region of New Zealand. | LitMetric

The New Zealand dairy industry produces approximately 17% of this country's total greenhouse gas emissions (GHG-e) and it is also this nation's largest export industry. The industry needs to reduce GHG-e under proposed policy directives and for ongoing market security. Given these pressures, there is the need to identify cost-effective management strategies to reduce on-farm GHG-e. The objective of this study was to investigate how the management of dairy farms in the Waikato region of New Zealand could change to minimise the abatement costs associated with GHG-e mitigation. Three typical farm systems importing low (less than 10%), medium (10-20%), and high (more than 20%) amounts of supplement are modelled using a non-linear optimisation model. A reduction in nitrogen fertiliser application was the production factor that changed the most to achieve the cap in all of the simulated systems, followed by a reduction in stocking rate. With the prices used in this study, decreasing farming intensity by reducing nitrogen fertiliser by 21-42% and stocking rate by 8-10% represented a cost of $68-$119/ha and a production reduction of 54-117 kg MS/ha for the three systems studied. Improving reproductive performance proved to be effective in reducing GHG-e, allowing for fewer replacement cows to be supported. However, it did not have a significant effect on profit when emissions were unconstrained. Nitrification inhibitors and stand-off pads were not identified as useful mitigation options, given their high cost relative to de-intensification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.09.038DOI Listing

Publication Analysis

Top Keywords

greenhouse gas
8
gas emissions
8
waikato region
8
region zealand
8
nitrogen fertiliser
8
stocking rate
8
ghg-e
5
cost-effective mitigation
4
mitigation greenhouse
4
emissions dairy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!