Objective: With the notorious reputation of the vicious invasion, the bladder cancer is the most common malignant tumor of the urinary system. Inhibiting invasion through microtubule dynamics interruption has emerged as an important treatment of bladder cancer. Here we investigated the role of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway in human bladder cancer cells invasion.

Materials And Methods: With or without the treatment of various cAMP elevators, we assessed invasive and migrated capabilities of T24 and UM-UC-3, two high-grade invasive bladder cancer cell lines, using matrigel transwell inserts assay and scratch wound healing assay. The microtubule (MT) dynamics were examined by immunofluorescence and immunoblotting. Microtubule-Associated Protein 4 (MAP4) was silenced to investigate its role in tumor invasion. We also analyzed gene expression of MAP4 in 34 patients with bladder cancer using immunohistochemical staining assay. The interaction between PKA and MAP4 was examined by co-immunoprecipitation.

Results: We used cAMP elevators and small interfering RNA of MAP4 here, found that both of them can potently inhibit the invasion and the migration of bladder cancer cells by disrupting microtubule (MT) cytoskeleton. Consistently, the bladder cancer grade is positively correlated with the protein level of MAP4. Furthermore, we found that cAMP/PKA signaling can disrupt MT cytoskeleton by the phosphorylation of MAP4.

Conclusion: Our results indicated that the cAMP/PKA signaling pathway might inhibit bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics, which could be exploited for the therapy of invasive bladder cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.urolonc.2013.06.017DOI Listing

Publication Analysis

Top Keywords

bladder cancer
40
microtubule dynamics
16
cancer cell
12
bladder
10
cancer
10
cell invasion
8
invasion targeting
8
targeting map4-dependent
8
map4-dependent microtubule
8
cancer cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!